📚 Documentação inicial do ALETHEIA

- MANUAL-PRODUTO.md: Manual do usuário final
- MANUAL-VENDAS.md: Estratégia comercial e vendas
- MANUAL-TECNICO.md: Infraestrutura e deploy
- README.md: Visão geral do projeto
This commit is contained in:
2026-02-10 15:08:15 -03:00
commit 20a26affaa
16617 changed files with 3202171 additions and 0 deletions

106
backend/app/routers/scan.py Normal file
View File

@@ -0,0 +1,106 @@
import json
from datetime import datetime, timezone, date
from fastapi import APIRouter, Depends, HTTPException
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, func
from app.database import get_db
from app.models.user import User
from app.models.product import Product
from app.models.scan import Scan
from app.schemas.scan import ScanRequest, ScanResult, ScanHistoryItem
from app.utils.security import get_current_user
from app.integrations.open_food_facts import fetch_product
from app.integrations.openai_client import analyze_product
from app.config import settings
from app.services.seed import SEED_PRODUCTS
router = APIRouter(prefix="/api", tags=["scan"])
@router.post("/scan", response_model=ScanResult)
async def scan_product(req: ScanRequest, user: User = Depends(get_current_user), db: AsyncSession = Depends(get_db)):
# Rate limit check
if not user.is_premium:
today_start = datetime.now(timezone.utc).replace(hour=0, minute=0, second=0, microsecond=0)
result = await db.execute(
select(func.count(Scan.id)).where(Scan.user_id == user.id, Scan.scanned_at >= today_start)
)
count = result.scalar()
if count >= settings.FREE_SCAN_LIMIT:
raise HTTPException(status_code=429, detail=f"Limite de {settings.FREE_SCAN_LIMIT} scans/dia atingido. Faça upgrade para Premium!")
# Check local cache
result = await db.execute(select(Product).where(Product.barcode == req.barcode))
product = result.scalar_one_or_none()
product_data = None
source = "cache"
if product:
product_data = {
"name": product.name, "brand": product.brand, "category": product.category,
"ingredients_text": product.ingredients_text, "nutri_score": product.nutri_score,
"nova_group": product.nova_group, "nutrition": json.loads(product.nutrition_json or "{}"),
"image_url": product.image_url,
}
else:
# Check seed data
if req.barcode in SEED_PRODUCTS:
product_data = SEED_PRODUCTS[req.barcode].copy()
source = "seed"
else:
# Fetch from Open Food Facts
product_data = await fetch_product(req.barcode)
source = "open_food_facts"
if product_data:
new_product = Product(
barcode=req.barcode, name=product_data.get("name"), brand=product_data.get("brand"),
category=product_data.get("category"), ingredients_text=product_data.get("ingredients_text"),
nutri_score=product_data.get("nutri_score"), nova_group=product_data.get("nova_group"),
nutrition_json=json.dumps(product_data.get("nutrition", {})),
image_url=product_data.get("image_url", ""),
)
db.add(new_product)
await db.commit()
if not product_data:
raise HTTPException(status_code=404, detail="Produto não encontrado. Tente inserir manualmente.")
# AI Analysis
analysis = await analyze_product(product_data)
# Save scan
scan = Scan(
user_id=user.id, barcode=req.barcode, product_name=product_data.get("name"),
brand=product_data.get("brand"), score=analysis.get("score", 50),
summary=analysis.get("summary", ""), analysis_json=json.dumps(analysis),
)
db.add(scan)
await db.commit()
return ScanResult(
barcode=req.barcode,
product_name=product_data.get("name"),
brand=product_data.get("brand"),
category=product_data.get("category"),
image_url=product_data.get("image_url"),
score=analysis.get("score", 50),
summary=analysis.get("summary", ""),
positives=analysis.get("positives", []),
negatives=analysis.get("negatives", []),
ingredients=analysis.get("ingredients", []),
nutri_score=product_data.get("nutri_score"),
nova_group=product_data.get("nova_group"),
source=source,
)
@router.get("/history", response_model=list[ScanHistoryItem])
async def get_history(user: User = Depends(get_current_user), db: AsyncSession = Depends(get_db)):
result = await db.execute(
select(Scan).where(Scan.user_id == user.id).order_by(Scan.scanned_at.desc()).limit(50)
)
scans = result.scalars().all()
return [ScanHistoryItem(
id=s.id, barcode=s.barcode, product_name=s.product_name,
brand=s.brand, score=s.score, scanned_at=s.scanned_at
) for s in scans]