📚 Documentação inicial do ALETHEIA

- MANUAL-PRODUTO.md: Manual do usuário final
- MANUAL-VENDAS.md: Estratégia comercial e vendas
- MANUAL-TECNICO.md: Infraestrutura e deploy
- README.md: Visão geral do projeto
This commit is contained in:
2026-02-10 15:08:15 -03:00
commit 20a26affaa
16617 changed files with 3202171 additions and 0 deletions

View File

@@ -0,0 +1,173 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .beta import (
Beta,
AsyncBeta,
BetaWithRawResponse,
AsyncBetaWithRawResponse,
BetaWithStreamingResponse,
AsyncBetaWithStreamingResponse,
)
from .chat import (
Chat,
AsyncChat,
ChatWithRawResponse,
AsyncChatWithRawResponse,
ChatWithStreamingResponse,
AsyncChatWithStreamingResponse,
)
from .audio import (
Audio,
AsyncAudio,
AudioWithRawResponse,
AsyncAudioWithRawResponse,
AudioWithStreamingResponse,
AsyncAudioWithStreamingResponse,
)
from .files import (
Files,
AsyncFiles,
FilesWithRawResponse,
AsyncFilesWithRawResponse,
FilesWithStreamingResponse,
AsyncFilesWithStreamingResponse,
)
from .images import (
Images,
AsyncImages,
ImagesWithRawResponse,
AsyncImagesWithRawResponse,
ImagesWithStreamingResponse,
AsyncImagesWithStreamingResponse,
)
from .models import (
Models,
AsyncModels,
ModelsWithRawResponse,
AsyncModelsWithRawResponse,
ModelsWithStreamingResponse,
AsyncModelsWithStreamingResponse,
)
from .batches import (
Batches,
AsyncBatches,
BatchesWithRawResponse,
AsyncBatchesWithRawResponse,
BatchesWithStreamingResponse,
AsyncBatchesWithStreamingResponse,
)
from .uploads import (
Uploads,
AsyncUploads,
UploadsWithRawResponse,
AsyncUploadsWithRawResponse,
UploadsWithStreamingResponse,
AsyncUploadsWithStreamingResponse,
)
from .embeddings import (
Embeddings,
AsyncEmbeddings,
EmbeddingsWithRawResponse,
AsyncEmbeddingsWithRawResponse,
EmbeddingsWithStreamingResponse,
AsyncEmbeddingsWithStreamingResponse,
)
from .completions import (
Completions,
AsyncCompletions,
CompletionsWithRawResponse,
AsyncCompletionsWithRawResponse,
CompletionsWithStreamingResponse,
AsyncCompletionsWithStreamingResponse,
)
from .fine_tuning import (
FineTuning,
AsyncFineTuning,
FineTuningWithRawResponse,
AsyncFineTuningWithRawResponse,
FineTuningWithStreamingResponse,
AsyncFineTuningWithStreamingResponse,
)
from .moderations import (
Moderations,
AsyncModerations,
ModerationsWithRawResponse,
AsyncModerationsWithRawResponse,
ModerationsWithStreamingResponse,
AsyncModerationsWithStreamingResponse,
)
__all__ = [
"Completions",
"AsyncCompletions",
"CompletionsWithRawResponse",
"AsyncCompletionsWithRawResponse",
"CompletionsWithStreamingResponse",
"AsyncCompletionsWithStreamingResponse",
"Chat",
"AsyncChat",
"ChatWithRawResponse",
"AsyncChatWithRawResponse",
"ChatWithStreamingResponse",
"AsyncChatWithStreamingResponse",
"Embeddings",
"AsyncEmbeddings",
"EmbeddingsWithRawResponse",
"AsyncEmbeddingsWithRawResponse",
"EmbeddingsWithStreamingResponse",
"AsyncEmbeddingsWithStreamingResponse",
"Files",
"AsyncFiles",
"FilesWithRawResponse",
"AsyncFilesWithRawResponse",
"FilesWithStreamingResponse",
"AsyncFilesWithStreamingResponse",
"Images",
"AsyncImages",
"ImagesWithRawResponse",
"AsyncImagesWithRawResponse",
"ImagesWithStreamingResponse",
"AsyncImagesWithStreamingResponse",
"Audio",
"AsyncAudio",
"AudioWithRawResponse",
"AsyncAudioWithRawResponse",
"AudioWithStreamingResponse",
"AsyncAudioWithStreamingResponse",
"Moderations",
"AsyncModerations",
"ModerationsWithRawResponse",
"AsyncModerationsWithRawResponse",
"ModerationsWithStreamingResponse",
"AsyncModerationsWithStreamingResponse",
"Models",
"AsyncModels",
"ModelsWithRawResponse",
"AsyncModelsWithRawResponse",
"ModelsWithStreamingResponse",
"AsyncModelsWithStreamingResponse",
"FineTuning",
"AsyncFineTuning",
"FineTuningWithRawResponse",
"AsyncFineTuningWithRawResponse",
"FineTuningWithStreamingResponse",
"AsyncFineTuningWithStreamingResponse",
"Beta",
"AsyncBeta",
"BetaWithRawResponse",
"AsyncBetaWithRawResponse",
"BetaWithStreamingResponse",
"AsyncBetaWithStreamingResponse",
"Batches",
"AsyncBatches",
"BatchesWithRawResponse",
"AsyncBatchesWithRawResponse",
"BatchesWithStreamingResponse",
"AsyncBatchesWithStreamingResponse",
"Uploads",
"AsyncUploads",
"UploadsWithRawResponse",
"AsyncUploadsWithRawResponse",
"UploadsWithStreamingResponse",
"AsyncUploadsWithStreamingResponse",
]

View File

@@ -0,0 +1,61 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .audio import (
Audio,
AsyncAudio,
AudioWithRawResponse,
AsyncAudioWithRawResponse,
AudioWithStreamingResponse,
AsyncAudioWithStreamingResponse,
)
from .speech import (
Speech,
AsyncSpeech,
SpeechWithRawResponse,
AsyncSpeechWithRawResponse,
SpeechWithStreamingResponse,
AsyncSpeechWithStreamingResponse,
)
from .translations import (
Translations,
AsyncTranslations,
TranslationsWithRawResponse,
AsyncTranslationsWithRawResponse,
TranslationsWithStreamingResponse,
AsyncTranslationsWithStreamingResponse,
)
from .transcriptions import (
Transcriptions,
AsyncTranscriptions,
TranscriptionsWithRawResponse,
AsyncTranscriptionsWithRawResponse,
TranscriptionsWithStreamingResponse,
AsyncTranscriptionsWithStreamingResponse,
)
__all__ = [
"Transcriptions",
"AsyncTranscriptions",
"TranscriptionsWithRawResponse",
"AsyncTranscriptionsWithRawResponse",
"TranscriptionsWithStreamingResponse",
"AsyncTranscriptionsWithStreamingResponse",
"Translations",
"AsyncTranslations",
"TranslationsWithRawResponse",
"AsyncTranslationsWithRawResponse",
"TranslationsWithStreamingResponse",
"AsyncTranslationsWithStreamingResponse",
"Speech",
"AsyncSpeech",
"SpeechWithRawResponse",
"AsyncSpeechWithRawResponse",
"SpeechWithStreamingResponse",
"AsyncSpeechWithStreamingResponse",
"Audio",
"AsyncAudio",
"AudioWithRawResponse",
"AsyncAudioWithRawResponse",
"AudioWithStreamingResponse",
"AsyncAudioWithStreamingResponse",
]

View File

@@ -0,0 +1,166 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from .speech import (
Speech,
AsyncSpeech,
SpeechWithRawResponse,
AsyncSpeechWithRawResponse,
SpeechWithStreamingResponse,
AsyncSpeechWithStreamingResponse,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from .translations import (
Translations,
AsyncTranslations,
TranslationsWithRawResponse,
AsyncTranslationsWithRawResponse,
TranslationsWithStreamingResponse,
AsyncTranslationsWithStreamingResponse,
)
from .transcriptions import (
Transcriptions,
AsyncTranscriptions,
TranscriptionsWithRawResponse,
AsyncTranscriptionsWithRawResponse,
TranscriptionsWithStreamingResponse,
AsyncTranscriptionsWithStreamingResponse,
)
__all__ = ["Audio", "AsyncAudio"]
class Audio(SyncAPIResource):
@cached_property
def transcriptions(self) -> Transcriptions:
return Transcriptions(self._client)
@cached_property
def translations(self) -> Translations:
return Translations(self._client)
@cached_property
def speech(self) -> Speech:
return Speech(self._client)
@cached_property
def with_raw_response(self) -> AudioWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AudioWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AudioWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AudioWithStreamingResponse(self)
class AsyncAudio(AsyncAPIResource):
@cached_property
def transcriptions(self) -> AsyncTranscriptions:
return AsyncTranscriptions(self._client)
@cached_property
def translations(self) -> AsyncTranslations:
return AsyncTranslations(self._client)
@cached_property
def speech(self) -> AsyncSpeech:
return AsyncSpeech(self._client)
@cached_property
def with_raw_response(self) -> AsyncAudioWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncAudioWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncAudioWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncAudioWithStreamingResponse(self)
class AudioWithRawResponse:
def __init__(self, audio: Audio) -> None:
self._audio = audio
@cached_property
def transcriptions(self) -> TranscriptionsWithRawResponse:
return TranscriptionsWithRawResponse(self._audio.transcriptions)
@cached_property
def translations(self) -> TranslationsWithRawResponse:
return TranslationsWithRawResponse(self._audio.translations)
@cached_property
def speech(self) -> SpeechWithRawResponse:
return SpeechWithRawResponse(self._audio.speech)
class AsyncAudioWithRawResponse:
def __init__(self, audio: AsyncAudio) -> None:
self._audio = audio
@cached_property
def transcriptions(self) -> AsyncTranscriptionsWithRawResponse:
return AsyncTranscriptionsWithRawResponse(self._audio.transcriptions)
@cached_property
def translations(self) -> AsyncTranslationsWithRawResponse:
return AsyncTranslationsWithRawResponse(self._audio.translations)
@cached_property
def speech(self) -> AsyncSpeechWithRawResponse:
return AsyncSpeechWithRawResponse(self._audio.speech)
class AudioWithStreamingResponse:
def __init__(self, audio: Audio) -> None:
self._audio = audio
@cached_property
def transcriptions(self) -> TranscriptionsWithStreamingResponse:
return TranscriptionsWithStreamingResponse(self._audio.transcriptions)
@cached_property
def translations(self) -> TranslationsWithStreamingResponse:
return TranslationsWithStreamingResponse(self._audio.translations)
@cached_property
def speech(self) -> SpeechWithStreamingResponse:
return SpeechWithStreamingResponse(self._audio.speech)
class AsyncAudioWithStreamingResponse:
def __init__(self, audio: AsyncAudio) -> None:
self._audio = audio
@cached_property
def transcriptions(self) -> AsyncTranscriptionsWithStreamingResponse:
return AsyncTranscriptionsWithStreamingResponse(self._audio.transcriptions)
@cached_property
def translations(self) -> AsyncTranslationsWithStreamingResponse:
return AsyncTranslationsWithStreamingResponse(self._audio.translations)
@cached_property
def speech(self) -> AsyncSpeechWithStreamingResponse:
return AsyncSpeechWithStreamingResponse(self._audio.speech)

View File

@@ -0,0 +1,234 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union
from typing_extensions import Literal
import httpx
from ... import _legacy_response
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ..._utils import (
maybe_transform,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import (
StreamedBinaryAPIResponse,
AsyncStreamedBinaryAPIResponse,
to_custom_streamed_response_wrapper,
async_to_custom_streamed_response_wrapper,
)
from ...types.audio import speech_create_params
from ..._base_client import make_request_options
from ...types.audio.speech_model import SpeechModel
__all__ = ["Speech", "AsyncSpeech"]
class Speech(SyncAPIResource):
@cached_property
def with_raw_response(self) -> SpeechWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return SpeechWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> SpeechWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return SpeechWithStreamingResponse(self)
def create(
self,
*,
input: str,
model: Union[str, SpeechModel],
voice: Literal["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] | NotGiven = NOT_GIVEN,
speed: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> _legacy_response.HttpxBinaryResponseContent:
"""
Generates audio from the input text.
Args:
input: The text to generate audio for. The maximum length is 4096 characters.
model:
One of the available [TTS models](https://platform.openai.com/docs/models/tts):
`tts-1` or `tts-1-hd`
voice: The voice to use when generating the audio. Supported voices are `alloy`,
`echo`, `fable`, `onyx`, `nova`, and `shimmer`. Previews of the voices are
available in the
[Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech/voice-options).
response_format: The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`,
`wav`, and `pcm`.
speed: The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is
the default.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"Accept": "application/octet-stream", **(extra_headers or {})}
return self._post(
"/audio/speech",
body=maybe_transform(
{
"input": input,
"model": model,
"voice": voice,
"response_format": response_format,
"speed": speed,
},
speech_create_params.SpeechCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_legacy_response.HttpxBinaryResponseContent,
)
class AsyncSpeech(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncSpeechWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncSpeechWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncSpeechWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncSpeechWithStreamingResponse(self)
async def create(
self,
*,
input: str,
model: Union[str, SpeechModel],
voice: Literal["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] | NotGiven = NOT_GIVEN,
speed: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> _legacy_response.HttpxBinaryResponseContent:
"""
Generates audio from the input text.
Args:
input: The text to generate audio for. The maximum length is 4096 characters.
model:
One of the available [TTS models](https://platform.openai.com/docs/models/tts):
`tts-1` or `tts-1-hd`
voice: The voice to use when generating the audio. Supported voices are `alloy`,
`echo`, `fable`, `onyx`, `nova`, and `shimmer`. Previews of the voices are
available in the
[Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech/voice-options).
response_format: The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`,
`wav`, and `pcm`.
speed: The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is
the default.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"Accept": "application/octet-stream", **(extra_headers or {})}
return await self._post(
"/audio/speech",
body=await async_maybe_transform(
{
"input": input,
"model": model,
"voice": voice,
"response_format": response_format,
"speed": speed,
},
speech_create_params.SpeechCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_legacy_response.HttpxBinaryResponseContent,
)
class SpeechWithRawResponse:
def __init__(self, speech: Speech) -> None:
self._speech = speech
self.create = _legacy_response.to_raw_response_wrapper(
speech.create,
)
class AsyncSpeechWithRawResponse:
def __init__(self, speech: AsyncSpeech) -> None:
self._speech = speech
self.create = _legacy_response.async_to_raw_response_wrapper(
speech.create,
)
class SpeechWithStreamingResponse:
def __init__(self, speech: Speech) -> None:
self._speech = speech
self.create = to_custom_streamed_response_wrapper(
speech.create,
StreamedBinaryAPIResponse,
)
class AsyncSpeechWithStreamingResponse:
def __init__(self, speech: AsyncSpeech) -> None:
self._speech = speech
self.create = async_to_custom_streamed_response_wrapper(
speech.create,
AsyncStreamedBinaryAPIResponse,
)

View File

@@ -0,0 +1,415 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, List, Union, Mapping, cast
from typing_extensions import Literal, overload, assert_never
import httpx
from ... import _legacy_response
from ...types import AudioResponseFormat
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ..._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...types.audio import transcription_create_params
from ..._base_client import make_request_options
from ...types.audio_model import AudioModel
from ...types.audio.transcription import Transcription
from ...types.audio_response_format import AudioResponseFormat
from ...types.audio.transcription_verbose import TranscriptionVerbose
__all__ = ["Transcriptions", "AsyncTranscriptions"]
log: logging.Logger = logging.getLogger("openai.audio.transcriptions")
class Transcriptions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> TranscriptionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return TranscriptionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TranscriptionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return TranscriptionsWithStreamingResponse(self)
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN,
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription: ...
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["verbose_json"],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranscriptionVerbose: ...
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["text", "srt", "vtt"],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str: ...
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription | TranscriptionVerbose | str:
"""
Transcribes audio into the input language.
Args:
file:
The audio file object (not file name) to transcribe, in one of these formats:
flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
language: The language of the input audio. Supplying the input language in
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will
improve accuracy and latency.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should match the audio language.
response_format: The format of the output, in one of these options: `json`, `text`, `srt`,
`verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
timestamp_granularities: The timestamp granularities to populate for this transcription.
`response_format` must be set `verbose_json` to use timestamp granularities.
Either or both of these options are supported: `word`, or `segment`. Note: There
is no additional latency for segment timestamps, but generating word timestamps
incurs additional latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
"timestamp_granularities": timestamp_granularities,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post( # type: ignore[return-value]
"/audio/transcriptions",
body=maybe_transform(body, transcription_create_params.TranscriptionCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_get_response_format_type(response_format),
)
class AsyncTranscriptions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncTranscriptionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncTranscriptionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTranscriptionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncTranscriptionsWithStreamingResponse(self)
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN,
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription: ...
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["verbose_json"],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranscriptionVerbose: ...
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["text", "srt", "vtt"],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str: ...
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription | TranscriptionVerbose | str:
"""
Transcribes audio into the input language.
Args:
file:
The audio file object (not file name) to transcribe, in one of these formats:
flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
language: The language of the input audio. Supplying the input language in
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will
improve accuracy and latency.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should match the audio language.
response_format: The format of the output, in one of these options: `json`, `text`, `srt`,
`verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
timestamp_granularities: The timestamp granularities to populate for this transcription.
`response_format` must be set `verbose_json` to use timestamp granularities.
Either or both of these options are supported: `word`, or `segment`. Note: There
is no additional latency for segment timestamps, but generating word timestamps
incurs additional latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
"timestamp_granularities": timestamp_granularities,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/audio/transcriptions",
body=await async_maybe_transform(body, transcription_create_params.TranscriptionCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_get_response_format_type(response_format),
)
class TranscriptionsWithRawResponse:
def __init__(self, transcriptions: Transcriptions) -> None:
self._transcriptions = transcriptions
self.create = _legacy_response.to_raw_response_wrapper(
transcriptions.create,
)
class AsyncTranscriptionsWithRawResponse:
def __init__(self, transcriptions: AsyncTranscriptions) -> None:
self._transcriptions = transcriptions
self.create = _legacy_response.async_to_raw_response_wrapper(
transcriptions.create,
)
class TranscriptionsWithStreamingResponse:
def __init__(self, transcriptions: Transcriptions) -> None:
self._transcriptions = transcriptions
self.create = to_streamed_response_wrapper(
transcriptions.create,
)
class AsyncTranscriptionsWithStreamingResponse:
def __init__(self, transcriptions: AsyncTranscriptions) -> None:
self._transcriptions = transcriptions
self.create = async_to_streamed_response_wrapper(
transcriptions.create,
)
def _get_response_format_type(
response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven,
) -> type[Transcription | TranscriptionVerbose | str]:
if isinstance(response_format, NotGiven) or response_format is None: # pyright: ignore[reportUnnecessaryComparison]
return Transcription
if response_format == "json":
return Transcription
elif response_format == "verbose_json":
return TranscriptionVerbose
elif response_format == "srt" or response_format == "text" or response_format == "vtt":
return str
elif TYPE_CHECKING: # type: ignore[unreachable]
assert_never(response_format)
else:
log.warn("Unexpected audio response format: %s", response_format)
return Transcription

View File

@@ -0,0 +1,373 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Union, Mapping, cast
from typing_extensions import Literal, overload, assert_never
import httpx
from ... import _legacy_response
from ...types import AudioResponseFormat
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ..._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...types.audio import translation_create_params
from ..._base_client import make_request_options
from ...types.audio_model import AudioModel
from ...types.audio.translation import Translation
from ...types.audio_response_format import AudioResponseFormat
from ...types.audio.translation_verbose import TranslationVerbose
__all__ = ["Translations", "AsyncTranslations"]
log: logging.Logger = logging.getLogger("openai.audio.transcriptions")
class Translations(SyncAPIResource):
@cached_property
def with_raw_response(self) -> TranslationsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return TranslationsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TranslationsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return TranslationsWithStreamingResponse(self)
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Translation: ...
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["verbose_json"],
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranslationVerbose: ...
@overload
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["text", "srt", "vtt"],
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str: ...
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
prompt: str | NotGiven = NOT_GIVEN,
response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Translation | TranslationVerbose | str:
"""
Translates audio into English.
Args:
file: The audio file object (not file name) translate, in one of these formats: flac,
mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should be in English.
response_format: The format of the output, in one of these options: `json`, `text`, `srt`,
`verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post( # type: ignore[return-value]
"/audio/translations",
body=maybe_transform(body, translation_create_params.TranslationCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_get_response_format_type(response_format),
)
class AsyncTranslations(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncTranslationsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncTranslationsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTranslationsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncTranslationsWithStreamingResponse(self)
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Translation: ...
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["verbose_json"],
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranslationVerbose: ...
@overload
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
response_format: Literal["text", "srt", "vtt"],
prompt: str | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str: ...
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
prompt: str | NotGiven = NOT_GIVEN,
response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Translation | TranslationVerbose | str:
"""
Translates audio into English.
Args:
file: The audio file object (not file name) translate, in one of these formats: flac,
mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should be in English.
response_format: The format of the output, in one of these options: `json`, `text`, `srt`,
`verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/audio/translations",
body=await async_maybe_transform(body, translation_create_params.TranslationCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_get_response_format_type(response_format),
)
class TranslationsWithRawResponse:
def __init__(self, translations: Translations) -> None:
self._translations = translations
self.create = _legacy_response.to_raw_response_wrapper(
translations.create,
)
class AsyncTranslationsWithRawResponse:
def __init__(self, translations: AsyncTranslations) -> None:
self._translations = translations
self.create = _legacy_response.async_to_raw_response_wrapper(
translations.create,
)
class TranslationsWithStreamingResponse:
def __init__(self, translations: Translations) -> None:
self._translations = translations
self.create = to_streamed_response_wrapper(
translations.create,
)
class AsyncTranslationsWithStreamingResponse:
def __init__(self, translations: AsyncTranslations) -> None:
self._translations = translations
self.create = async_to_streamed_response_wrapper(
translations.create,
)
def _get_response_format_type(
response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven,
) -> type[Translation | TranslationVerbose | str]:
if isinstance(response_format, NotGiven) or response_format is None: # pyright: ignore[reportUnnecessaryComparison]
return Translation
if response_format == "json":
return Translation
elif response_format == "verbose_json":
return TranslationVerbose
elif response_format == "srt" or response_format == "text" or response_format == "vtt":
return str
elif TYPE_CHECKING: # type: ignore[unreachable]
assert_never(response_format)
else:
log.warn("Unexpected audio response format: %s", response_format)
return Transcription

View File

@@ -0,0 +1,509 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Dict, Optional
from typing_extensions import Literal
import httpx
from .. import _legacy_response
from ..types import batch_list_params, batch_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import (
maybe_transform,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ..pagination import SyncCursorPage, AsyncCursorPage
from ..types.batch import Batch
from .._base_client import (
AsyncPaginator,
make_request_options,
)
__all__ = ["Batches", "AsyncBatches"]
class Batches(SyncAPIResource):
@cached_property
def with_raw_response(self) -> BatchesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return BatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> BatchesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return BatchesWithStreamingResponse(self)
def create(
self,
*,
completion_window: Literal["24h"],
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
input_file_id: str,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""
Creates and executes a batch from an uploaded file of requests
Args:
completion_window: The time frame within which the batch should be processed. Currently only `24h`
is supported.
endpoint: The endpoint to be used for all requests in the batch. Currently
`/v1/chat/completions`, `/v1/embeddings`, and `/v1/completions` are supported.
Note that `/v1/embeddings` batches are also restricted to a maximum of 50,000
embedding inputs across all requests in the batch.
input_file_id: The ID of an uploaded file that contains requests for the new batch.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your input file must be formatted as a
[JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input),
and must be uploaded with the purpose `batch`. The file can contain up to 50,000
requests, and can be up to 100 MB in size.
metadata: Optional custom metadata for the batch.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/batches",
body=maybe_transform(
{
"completion_window": completion_window,
"endpoint": endpoint,
"input_file_id": input_file_id,
"metadata": metadata,
},
batch_create_params.BatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
def retrieve(
self,
batch_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""
Retrieves a batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
return self._get(
f"/batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[Batch]:
"""List your organization's batches.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/batches",
page=SyncCursorPage[Batch],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
batch_list_params.BatchListParams,
),
),
model=Batch,
)
def cancel(
self,
batch_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""Cancels an in-progress batch.
The batch will be in status `cancelling` for up to
10 minutes, before changing to `cancelled`, where it will have partial results
(if any) available in the output file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
return self._post(
f"/batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
class AsyncBatches(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncBatchesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncBatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncBatchesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncBatchesWithStreamingResponse(self)
async def create(
self,
*,
completion_window: Literal["24h"],
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
input_file_id: str,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""
Creates and executes a batch from an uploaded file of requests
Args:
completion_window: The time frame within which the batch should be processed. Currently only `24h`
is supported.
endpoint: The endpoint to be used for all requests in the batch. Currently
`/v1/chat/completions`, `/v1/embeddings`, and `/v1/completions` are supported.
Note that `/v1/embeddings` batches are also restricted to a maximum of 50,000
embedding inputs across all requests in the batch.
input_file_id: The ID of an uploaded file that contains requests for the new batch.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your input file must be formatted as a
[JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input),
and must be uploaded with the purpose `batch`. The file can contain up to 50,000
requests, and can be up to 100 MB in size.
metadata: Optional custom metadata for the batch.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/batches",
body=await async_maybe_transform(
{
"completion_window": completion_window,
"endpoint": endpoint,
"input_file_id": input_file_id,
"metadata": metadata,
},
batch_create_params.BatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
async def retrieve(
self,
batch_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""
Retrieves a batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
return await self._get(
f"/batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[Batch, AsyncCursorPage[Batch]]:
"""List your organization's batches.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/batches",
page=AsyncCursorPage[Batch],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
batch_list_params.BatchListParams,
),
),
model=Batch,
)
async def cancel(
self,
batch_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Batch:
"""Cancels an in-progress batch.
The batch will be in status `cancelling` for up to
10 minutes, before changing to `cancelled`, where it will have partial results
(if any) available in the output file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
return await self._post(
f"/batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Batch,
)
class BatchesWithRawResponse:
def __init__(self, batches: Batches) -> None:
self._batches = batches
self.create = _legacy_response.to_raw_response_wrapper(
batches.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
batches.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
batches.list,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
batches.cancel,
)
class AsyncBatchesWithRawResponse:
def __init__(self, batches: AsyncBatches) -> None:
self._batches = batches
self.create = _legacy_response.async_to_raw_response_wrapper(
batches.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
batches.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
batches.list,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
batches.cancel,
)
class BatchesWithStreamingResponse:
def __init__(self, batches: Batches) -> None:
self._batches = batches
self.create = to_streamed_response_wrapper(
batches.create,
)
self.retrieve = to_streamed_response_wrapper(
batches.retrieve,
)
self.list = to_streamed_response_wrapper(
batches.list,
)
self.cancel = to_streamed_response_wrapper(
batches.cancel,
)
class AsyncBatchesWithStreamingResponse:
def __init__(self, batches: AsyncBatches) -> None:
self._batches = batches
self.create = async_to_streamed_response_wrapper(
batches.create,
)
self.retrieve = async_to_streamed_response_wrapper(
batches.retrieve,
)
self.list = async_to_streamed_response_wrapper(
batches.list,
)
self.cancel = async_to_streamed_response_wrapper(
batches.cancel,
)

View File

@@ -0,0 +1,61 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .beta import (
Beta,
AsyncBeta,
BetaWithRawResponse,
AsyncBetaWithRawResponse,
BetaWithStreamingResponse,
AsyncBetaWithStreamingResponse,
)
from .threads import (
Threads,
AsyncThreads,
ThreadsWithRawResponse,
AsyncThreadsWithRawResponse,
ThreadsWithStreamingResponse,
AsyncThreadsWithStreamingResponse,
)
from .assistants import (
Assistants,
AsyncAssistants,
AssistantsWithRawResponse,
AsyncAssistantsWithRawResponse,
AssistantsWithStreamingResponse,
AsyncAssistantsWithStreamingResponse,
)
from .vector_stores import (
VectorStores,
AsyncVectorStores,
VectorStoresWithRawResponse,
AsyncVectorStoresWithRawResponse,
VectorStoresWithStreamingResponse,
AsyncVectorStoresWithStreamingResponse,
)
__all__ = [
"VectorStores",
"AsyncVectorStores",
"VectorStoresWithRawResponse",
"AsyncVectorStoresWithRawResponse",
"VectorStoresWithStreamingResponse",
"AsyncVectorStoresWithStreamingResponse",
"Assistants",
"AsyncAssistants",
"AssistantsWithRawResponse",
"AsyncAssistantsWithRawResponse",
"AssistantsWithStreamingResponse",
"AsyncAssistantsWithStreamingResponse",
"Threads",
"AsyncThreads",
"ThreadsWithRawResponse",
"AsyncThreadsWithRawResponse",
"ThreadsWithStreamingResponse",
"AsyncThreadsWithStreamingResponse",
"Beta",
"AsyncBeta",
"BetaWithRawResponse",
"AsyncBetaWithRawResponse",
"BetaWithStreamingResponse",
"AsyncBetaWithStreamingResponse",
]

View File

@@ -0,0 +1,888 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union, Iterable, Optional
from typing_extensions import Literal
import httpx
from ... import _legacy_response
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ..._utils import (
maybe_transform,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...pagination import SyncCursorPage, AsyncCursorPage
from ...types.beta import (
assistant_list_params,
assistant_create_params,
assistant_update_params,
)
from ..._base_client import AsyncPaginator, make_request_options
from ...types.chat_model import ChatModel
from ...types.beta.assistant import Assistant
from ...types.beta.assistant_deleted import AssistantDeleted
from ...types.beta.assistant_tool_param import AssistantToolParam
from ...types.beta.assistant_response_format_option_param import AssistantResponseFormatOptionParam
__all__ = ["Assistants", "AsyncAssistants"]
class Assistants(SyncAPIResource):
@cached_property
def with_raw_response(self) -> AssistantsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AssistantsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AssistantsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AssistantsWithStreamingResponse(self)
def create(
self,
*,
model: Union[str, ChatModel],
description: Optional[str] | NotGiven = NOT_GIVEN,
instructions: Optional[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_resources: Optional[assistant_create_params.ToolResources] | NotGiven = NOT_GIVEN,
tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""
Create an assistant with a model and instructions.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
description: The description of the assistant. The maximum length is 512 characters.
instructions: The system instructions that the assistant uses. The maximum length is 256,000
characters.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the assistant. The maximum length is 256 characters.
response_format: Specifies the format that the model must output. Compatible with
[GPT-4o](https://platform.openai.com/docs/models/gpt-4o),
[GPT-4 Turbo](https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4),
and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
Outputs which ensures the model will match your supplied JSON schema. Learn more
in the
[Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs).
Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the
message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to
produce JSON yourself via a system or user message. Without this, the model may
generate an unending stream of whitespace until the generation reaches the token
limit, resulting in a long-running and seemingly "stuck" request. Also note that
the message content may be partially cut off if `finish_reason="length"`, which
indicates the generation exceeded `max_tokens` or the conversation exceeded the
max context length.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
tool_resources: A set of resources that are used by the assistant's tools. The resources are
specific to the type of tool. For example, the `code_interpreter` tool requires
a list of file IDs, while the `file_search` tool requires a list of vector store
IDs.
tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per
assistant. Tools can be of types `code_interpreter`, `file_search`, or
`function`.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
"/assistants",
body=maybe_transform(
{
"model": model,
"description": description,
"instructions": instructions,
"metadata": metadata,
"name": name,
"response_format": response_format,
"temperature": temperature,
"tool_resources": tool_resources,
"tools": tools,
"top_p": top_p,
},
assistant_create_params.AssistantCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
def retrieve(
self,
assistant_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""
Retrieves an assistant.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/assistants/{assistant_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
def update(
self,
assistant_id: str,
*,
description: Optional[str] | NotGiven = NOT_GIVEN,
instructions: Optional[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
model: str | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_resources: Optional[assistant_update_params.ToolResources] | NotGiven = NOT_GIVEN,
tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""Modifies an assistant.
Args:
description: The description of the assistant.
The maximum length is 512 characters.
instructions: The system instructions that the assistant uses. The maximum length is 256,000
characters.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
name: The name of the assistant. The maximum length is 256 characters.
response_format: Specifies the format that the model must output. Compatible with
[GPT-4o](https://platform.openai.com/docs/models/gpt-4o),
[GPT-4 Turbo](https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4),
and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
Outputs which ensures the model will match your supplied JSON schema. Learn more
in the
[Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs).
Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the
message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to
produce JSON yourself via a system or user message. Without this, the model may
generate an unending stream of whitespace until the generation reaches the token
limit, resulting in a long-running and seemingly "stuck" request. Also note that
the message content may be partially cut off if `finish_reason="length"`, which
indicates the generation exceeded `max_tokens` or the conversation exceeded the
max context length.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
tool_resources: A set of resources that are used by the assistant's tools. The resources are
specific to the type of tool. For example, the `code_interpreter` tool requires
a list of file IDs, while the `file_search` tool requires a list of vector store
IDs.
tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per
assistant. Tools can be of types `code_interpreter`, `file_search`, or
`function`.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/assistants/{assistant_id}",
body=maybe_transform(
{
"description": description,
"instructions": instructions,
"metadata": metadata,
"model": model,
"name": name,
"response_format": response_format,
"temperature": temperature,
"tool_resources": tool_resources,
"tools": tools,
"top_p": top_p,
},
assistant_update_params.AssistantUpdateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[Assistant]:
"""Returns a list of assistants.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
"/assistants",
page=SyncCursorPage[Assistant],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
},
assistant_list_params.AssistantListParams,
),
),
model=Assistant,
)
def delete(
self,
assistant_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AssistantDeleted:
"""
Delete an assistant.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._delete(
f"/assistants/{assistant_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=AssistantDeleted,
)
class AsyncAssistants(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncAssistantsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncAssistantsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncAssistantsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncAssistantsWithStreamingResponse(self)
async def create(
self,
*,
model: Union[str, ChatModel],
description: Optional[str] | NotGiven = NOT_GIVEN,
instructions: Optional[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_resources: Optional[assistant_create_params.ToolResources] | NotGiven = NOT_GIVEN,
tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""
Create an assistant with a model and instructions.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
description: The description of the assistant. The maximum length is 512 characters.
instructions: The system instructions that the assistant uses. The maximum length is 256,000
characters.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the assistant. The maximum length is 256 characters.
response_format: Specifies the format that the model must output. Compatible with
[GPT-4o](https://platform.openai.com/docs/models/gpt-4o),
[GPT-4 Turbo](https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4),
and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
Outputs which ensures the model will match your supplied JSON schema. Learn more
in the
[Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs).
Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the
message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to
produce JSON yourself via a system or user message. Without this, the model may
generate an unending stream of whitespace until the generation reaches the token
limit, resulting in a long-running and seemingly "stuck" request. Also note that
the message content may be partially cut off if `finish_reason="length"`, which
indicates the generation exceeded `max_tokens` or the conversation exceeded the
max context length.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
tool_resources: A set of resources that are used by the assistant's tools. The resources are
specific to the type of tool. For example, the `code_interpreter` tool requires
a list of file IDs, while the `file_search` tool requires a list of vector store
IDs.
tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per
assistant. Tools can be of types `code_interpreter`, `file_search`, or
`function`.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
"/assistants",
body=await async_maybe_transform(
{
"model": model,
"description": description,
"instructions": instructions,
"metadata": metadata,
"name": name,
"response_format": response_format,
"temperature": temperature,
"tool_resources": tool_resources,
"tools": tools,
"top_p": top_p,
},
assistant_create_params.AssistantCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
async def retrieve(
self,
assistant_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""
Retrieves an assistant.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/assistants/{assistant_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
async def update(
self,
assistant_id: str,
*,
description: Optional[str] | NotGiven = NOT_GIVEN,
instructions: Optional[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
model: str | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_resources: Optional[assistant_update_params.ToolResources] | NotGiven = NOT_GIVEN,
tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Assistant:
"""Modifies an assistant.
Args:
description: The description of the assistant.
The maximum length is 512 characters.
instructions: The system instructions that the assistant uses. The maximum length is 256,000
characters.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
name: The name of the assistant. The maximum length is 256 characters.
response_format: Specifies the format that the model must output. Compatible with
[GPT-4o](https://platform.openai.com/docs/models/gpt-4o),
[GPT-4 Turbo](https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4),
and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured
Outputs which ensures the model will match your supplied JSON schema. Learn more
in the
[Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs).
Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the
message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to
produce JSON yourself via a system or user message. Without this, the model may
generate an unending stream of whitespace until the generation reaches the token
limit, resulting in a long-running and seemingly "stuck" request. Also note that
the message content may be partially cut off if `finish_reason="length"`, which
indicates the generation exceeded `max_tokens` or the conversation exceeded the
max context length.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
tool_resources: A set of resources that are used by the assistant's tools. The resources are
specific to the type of tool. For example, the `code_interpreter` tool requires
a list of file IDs, while the `file_search` tool requires a list of vector store
IDs.
tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per
assistant. Tools can be of types `code_interpreter`, `file_search`, or
`function`.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/assistants/{assistant_id}",
body=await async_maybe_transform(
{
"description": description,
"instructions": instructions,
"metadata": metadata,
"model": model,
"name": name,
"response_format": response_format,
"temperature": temperature,
"tool_resources": tool_resources,
"tools": tools,
"top_p": top_p,
},
assistant_update_params.AssistantUpdateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Assistant,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[Assistant, AsyncCursorPage[Assistant]]:
"""Returns a list of assistants.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
"/assistants",
page=AsyncCursorPage[Assistant],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
},
assistant_list_params.AssistantListParams,
),
),
model=Assistant,
)
async def delete(
self,
assistant_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AssistantDeleted:
"""
Delete an assistant.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not assistant_id:
raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._delete(
f"/assistants/{assistant_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=AssistantDeleted,
)
class AssistantsWithRawResponse:
def __init__(self, assistants: Assistants) -> None:
self._assistants = assistants
self.create = _legacy_response.to_raw_response_wrapper(
assistants.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
assistants.retrieve,
)
self.update = _legacy_response.to_raw_response_wrapper(
assistants.update,
)
self.list = _legacy_response.to_raw_response_wrapper(
assistants.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
assistants.delete,
)
class AsyncAssistantsWithRawResponse:
def __init__(self, assistants: AsyncAssistants) -> None:
self._assistants = assistants
self.create = _legacy_response.async_to_raw_response_wrapper(
assistants.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
assistants.retrieve,
)
self.update = _legacy_response.async_to_raw_response_wrapper(
assistants.update,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
assistants.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
assistants.delete,
)
class AssistantsWithStreamingResponse:
def __init__(self, assistants: Assistants) -> None:
self._assistants = assistants
self.create = to_streamed_response_wrapper(
assistants.create,
)
self.retrieve = to_streamed_response_wrapper(
assistants.retrieve,
)
self.update = to_streamed_response_wrapper(
assistants.update,
)
self.list = to_streamed_response_wrapper(
assistants.list,
)
self.delete = to_streamed_response_wrapper(
assistants.delete,
)
class AsyncAssistantsWithStreamingResponse:
def __init__(self, assistants: AsyncAssistants) -> None:
self._assistants = assistants
self.create = async_to_streamed_response_wrapper(
assistants.create,
)
self.retrieve = async_to_streamed_response_wrapper(
assistants.retrieve,
)
self.update = async_to_streamed_response_wrapper(
assistants.update,
)
self.list = async_to_streamed_response_wrapper(
assistants.list,
)
self.delete = async_to_streamed_response_wrapper(
assistants.delete,
)

View File

@@ -0,0 +1,177 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from .threads import (
Threads,
AsyncThreads,
ThreadsWithRawResponse,
AsyncThreadsWithRawResponse,
ThreadsWithStreamingResponse,
AsyncThreadsWithStreamingResponse,
)
from ..._compat import cached_property
from .chat.chat import Chat, AsyncChat
from .assistants import (
Assistants,
AsyncAssistants,
AssistantsWithRawResponse,
AsyncAssistantsWithRawResponse,
AssistantsWithStreamingResponse,
AsyncAssistantsWithStreamingResponse,
)
from ..._resource import SyncAPIResource, AsyncAPIResource
from .vector_stores import (
VectorStores,
AsyncVectorStores,
VectorStoresWithRawResponse,
AsyncVectorStoresWithRawResponse,
VectorStoresWithStreamingResponse,
AsyncVectorStoresWithStreamingResponse,
)
from .threads.threads import Threads, AsyncThreads
from .vector_stores.vector_stores import VectorStores, AsyncVectorStores
__all__ = ["Beta", "AsyncBeta"]
class Beta(SyncAPIResource):
@cached_property
def chat(self) -> Chat:
return Chat(self._client)
@cached_property
def vector_stores(self) -> VectorStores:
return VectorStores(self._client)
@cached_property
def assistants(self) -> Assistants:
return Assistants(self._client)
@cached_property
def threads(self) -> Threads:
return Threads(self._client)
@cached_property
def with_raw_response(self) -> BetaWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return BetaWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> BetaWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return BetaWithStreamingResponse(self)
class AsyncBeta(AsyncAPIResource):
@cached_property
def chat(self) -> AsyncChat:
return AsyncChat(self._client)
@cached_property
def vector_stores(self) -> AsyncVectorStores:
return AsyncVectorStores(self._client)
@cached_property
def assistants(self) -> AsyncAssistants:
return AsyncAssistants(self._client)
@cached_property
def threads(self) -> AsyncThreads:
return AsyncThreads(self._client)
@cached_property
def with_raw_response(self) -> AsyncBetaWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncBetaWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncBetaWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncBetaWithStreamingResponse(self)
class BetaWithRawResponse:
def __init__(self, beta: Beta) -> None:
self._beta = beta
@cached_property
def vector_stores(self) -> VectorStoresWithRawResponse:
return VectorStoresWithRawResponse(self._beta.vector_stores)
@cached_property
def assistants(self) -> AssistantsWithRawResponse:
return AssistantsWithRawResponse(self._beta.assistants)
@cached_property
def threads(self) -> ThreadsWithRawResponse:
return ThreadsWithRawResponse(self._beta.threads)
class AsyncBetaWithRawResponse:
def __init__(self, beta: AsyncBeta) -> None:
self._beta = beta
@cached_property
def vector_stores(self) -> AsyncVectorStoresWithRawResponse:
return AsyncVectorStoresWithRawResponse(self._beta.vector_stores)
@cached_property
def assistants(self) -> AsyncAssistantsWithRawResponse:
return AsyncAssistantsWithRawResponse(self._beta.assistants)
@cached_property
def threads(self) -> AsyncThreadsWithRawResponse:
return AsyncThreadsWithRawResponse(self._beta.threads)
class BetaWithStreamingResponse:
def __init__(self, beta: Beta) -> None:
self._beta = beta
@cached_property
def vector_stores(self) -> VectorStoresWithStreamingResponse:
return VectorStoresWithStreamingResponse(self._beta.vector_stores)
@cached_property
def assistants(self) -> AssistantsWithStreamingResponse:
return AssistantsWithStreamingResponse(self._beta.assistants)
@cached_property
def threads(self) -> ThreadsWithStreamingResponse:
return ThreadsWithStreamingResponse(self._beta.threads)
class AsyncBetaWithStreamingResponse:
def __init__(self, beta: AsyncBeta) -> None:
self._beta = beta
@cached_property
def vector_stores(self) -> AsyncVectorStoresWithStreamingResponse:
return AsyncVectorStoresWithStreamingResponse(self._beta.vector_stores)
@cached_property
def assistants(self) -> AsyncAssistantsWithStreamingResponse:
return AsyncAssistantsWithStreamingResponse(self._beta.assistants)
@cached_property
def threads(self) -> AsyncThreadsWithStreamingResponse:
return AsyncThreadsWithStreamingResponse(self._beta.threads)

View File

@@ -0,0 +1,11 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .chat import Chat, AsyncChat
from .completions import Completions, AsyncCompletions
__all__ = [
"Completions",
"AsyncCompletions",
"Chat",
"AsyncChat",
]

View File

@@ -0,0 +1,21 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from ...._compat import cached_property
from .completions import Completions, AsyncCompletions
from ...._resource import SyncAPIResource, AsyncAPIResource
__all__ = ["Chat", "AsyncChat"]
class Chat(SyncAPIResource):
@cached_property
def completions(self) -> Completions:
return Completions(self._client)
class AsyncChat(AsyncAPIResource):
@cached_property
def completions(self) -> AsyncCompletions:
return AsyncCompletions(self._client)

View File

@@ -0,0 +1,591 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Dict, List, Type, Union, Iterable, Optional, cast
from functools import partial
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import maybe_transform, async_maybe_transform
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...._streaming import Stream
from ....types.chat import completion_create_params
from ...._base_client import make_request_options
from ....lib._parsing import (
ResponseFormatT,
validate_input_tools as _validate_input_tools,
parse_chat_completion as _parse_chat_completion,
type_to_response_format_param as _type_to_response_format,
)
from ....types.chat_model import ChatModel
from ....lib.streaming.chat import ChatCompletionStreamManager, AsyncChatCompletionStreamManager
from ....types.chat.chat_completion import ChatCompletion
from ....types.chat.chat_completion_chunk import ChatCompletionChunk
from ....types.chat.parsed_chat_completion import ParsedChatCompletion
from ....types.chat.chat_completion_tool_param import ChatCompletionToolParam
from ....types.chat.chat_completion_message_param import ChatCompletionMessageParam
from ....types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam
from ....types.chat.chat_completion_tool_choice_option_param import ChatCompletionToolChoiceOptionParam
__all__ = ["Completions", "AsyncCompletions"]
class Completions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> CompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return CompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> CompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return CompletionsWithStreamingResponse(self)
def parse(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ParsedChatCompletion[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
& returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.
You can pass a pydantic model to this method and it will automatically convert the model
into a JSON schema, send it to the API and parse the response content back into the given model.
This method will also automatically parse `function` tool calls if:
- You use the `openai.pydantic_function_tool()` helper method
- You mark your tool schema with `"strict": True`
Example usage:
```py
from pydantic import BaseModel
from openai import OpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = OpenAI()
completion = client.beta.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "solve 8x + 31 = 2"},
],
response_format=MathResponse,
)
message = completion.choices[0].message
if message.parsed:
print(message.parsed.steps)
print("answer: ", message.parsed.final_answer)
```
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.parse",
**(extra_headers or {}),
}
def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]:
return _parse_chat_completion(
response_format=response_format,
chat_completion=raw_completion,
input_tools=tools,
)
return self._post(
"/chat/completions",
body=maybe_transform(
{
"messages": messages,
"model": model,
"frequency_penalty": frequency_penalty,
"function_call": function_call,
"functions": functions,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"metadata": metadata,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"presence_penalty": presence_penalty,
"response_format": _type_to_response_format(response_format),
"seed": seed,
"service_tier": service_tier,
"stop": stop,
"store": store,
"stream": False,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
# we turn the `ChatCompletion` instance into a `ParsedChatCompletion`
# in the `parser` function above
cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion),
stream=False,
)
def stream(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ChatCompletionStreamManager[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
and automatic accumulation of each delta.
This also supports all of the parsing utilities that `.parse()` does.
Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:
```py
with client.beta.chat.completions.stream(
model="gpt-4o-2024-08-06",
messages=[...],
) as stream:
for event in stream:
if event.type == "content.delta":
print(event.delta, flush=True, end="")
```
When the context manager is entered, a `ChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).
When the context manager exits, the response will be closed, however the `stream` instance is still available outside
the context manager.
"""
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.stream",
**(extra_headers or {}),
}
api_request: partial[Stream[ChatCompletionChunk]] = partial(
self._client.chat.completions.create,
messages=messages,
model=model,
stream=True,
response_format=_type_to_response_format(response_format),
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
metadata=metadata,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
seed=seed,
service_tier=service_tier,
store=store,
stop=stop,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
)
return ChatCompletionStreamManager(
api_request,
response_format=response_format,
input_tools=tools,
)
class AsyncCompletions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncCompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncCompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncCompletionsWithStreamingResponse(self)
async def parse(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ParsedChatCompletion[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
& returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.
You can pass a pydantic model to this method and it will automatically convert the model
into a JSON schema, send it to the API and parse the response content back into the given model.
This method will also automatically parse `function` tool calls if:
- You use the `openai.pydantic_function_tool()` helper method
- You mark your tool schema with `"strict": True`
Example usage:
```py
from pydantic import BaseModel
from openai import AsyncOpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = AsyncOpenAI()
completion = await client.beta.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "solve 8x + 31 = 2"},
],
response_format=MathResponse,
)
message = completion.choices[0].message
if message.parsed:
print(message.parsed.steps)
print("answer: ", message.parsed.final_answer)
```
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.parse",
**(extra_headers or {}),
}
def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]:
return _parse_chat_completion(
response_format=response_format,
chat_completion=raw_completion,
input_tools=tools,
)
return await self._post(
"/chat/completions",
body=await async_maybe_transform(
{
"messages": messages,
"model": model,
"frequency_penalty": frequency_penalty,
"function_call": function_call,
"functions": functions,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"metadata": metadata,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"presence_penalty": presence_penalty,
"response_format": _type_to_response_format(response_format),
"seed": seed,
"service_tier": service_tier,
"store": store,
"stop": stop,
"stream": False,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
# we turn the `ChatCompletion` instance into a `ParsedChatCompletion`
# in the `parser` function above
cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion),
stream=False,
)
def stream(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncChatCompletionStreamManager[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
and automatic accumulation of each delta.
This also supports all of the parsing utilities that `.parse()` does.
Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:
```py
async with client.beta.chat.completions.stream(
model="gpt-4o-2024-08-06",
messages=[...],
) as stream:
async for event in stream:
if event.type == "content.delta":
print(event.delta, flush=True, end="")
```
When the context manager is entered, an `AsyncChatCompletionStream` instance is returned which, like `.create(stream=True)` is an async iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).
When the context manager exits, the response will be closed, however the `stream` instance is still available outside
the context manager.
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.stream",
**(extra_headers or {}),
}
api_request = self._client.chat.completions.create(
messages=messages,
model=model,
stream=True,
response_format=_type_to_response_format(response_format),
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
metadata=metadata,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
seed=seed,
service_tier=service_tier,
stop=stop,
store=store,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
)
return AsyncChatCompletionStreamManager(
api_request,
response_format=response_format,
input_tools=tools,
)
class CompletionsWithRawResponse:
def __init__(self, completions: Completions) -> None:
self._completions = completions
self.parse = _legacy_response.to_raw_response_wrapper(
completions.parse,
)
class AsyncCompletionsWithRawResponse:
def __init__(self, completions: AsyncCompletions) -> None:
self._completions = completions
self.parse = _legacy_response.async_to_raw_response_wrapper(
completions.parse,
)
class CompletionsWithStreamingResponse:
def __init__(self, completions: Completions) -> None:
self._completions = completions
self.parse = to_streamed_response_wrapper(
completions.parse,
)
class AsyncCompletionsWithStreamingResponse:
def __init__(self, completions: AsyncCompletions) -> None:
self._completions = completions
self.parse = async_to_streamed_response_wrapper(
completions.parse,
)

View File

@@ -0,0 +1,47 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .runs import (
Runs,
AsyncRuns,
RunsWithRawResponse,
AsyncRunsWithRawResponse,
RunsWithStreamingResponse,
AsyncRunsWithStreamingResponse,
)
from .threads import (
Threads,
AsyncThreads,
ThreadsWithRawResponse,
AsyncThreadsWithRawResponse,
ThreadsWithStreamingResponse,
AsyncThreadsWithStreamingResponse,
)
from .messages import (
Messages,
AsyncMessages,
MessagesWithRawResponse,
AsyncMessagesWithRawResponse,
MessagesWithStreamingResponse,
AsyncMessagesWithStreamingResponse,
)
__all__ = [
"Runs",
"AsyncRuns",
"RunsWithRawResponse",
"AsyncRunsWithRawResponse",
"RunsWithStreamingResponse",
"AsyncRunsWithStreamingResponse",
"Messages",
"AsyncMessages",
"MessagesWithRawResponse",
"AsyncMessagesWithRawResponse",
"MessagesWithStreamingResponse",
"AsyncMessagesWithStreamingResponse",
"Threads",
"AsyncThreads",
"ThreadsWithRawResponse",
"AsyncThreadsWithRawResponse",
"ThreadsWithStreamingResponse",
"AsyncThreadsWithStreamingResponse",
]

View File

@@ -0,0 +1,661 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union, Iterable, Optional
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ...._base_client import (
AsyncPaginator,
make_request_options,
)
from ....types.beta.threads import message_list_params, message_create_params, message_update_params
from ....types.beta.threads.message import Message
from ....types.beta.threads.message_deleted import MessageDeleted
from ....types.beta.threads.message_content_part_param import MessageContentPartParam
__all__ = ["Messages", "AsyncMessages"]
class Messages(SyncAPIResource):
@cached_property
def with_raw_response(self) -> MessagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return MessagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> MessagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return MessagesWithStreamingResponse(self)
def create(
self,
thread_id: str,
*,
content: Union[str, Iterable[MessageContentPartParam]],
role: Literal["user", "assistant"],
attachments: Optional[Iterable[message_create_params.Attachment]] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Create a message.
Args:
content: The text contents of the message.
role:
The role of the entity that is creating the message. Allowed values include:
- `user`: Indicates the message is sent by an actual user and should be used in
most cases to represent user-generated messages.
- `assistant`: Indicates the message is generated by the assistant. Use this
value to insert messages from the assistant into the conversation.
attachments: A list of files attached to the message, and the tools they should be added to.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/threads/{thread_id}/messages",
body=maybe_transform(
{
"content": content,
"role": role,
"attachments": attachments,
"metadata": metadata,
},
message_create_params.MessageCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
def retrieve(
self,
message_id: str,
*,
thread_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Retrieve a message.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/threads/{thread_id}/messages/{message_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
def update(
self,
message_id: str,
*,
thread_id: str,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Modifies a message.
Args:
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/threads/{thread_id}/messages/{message_id}",
body=maybe_transform({"metadata": metadata}, message_update_params.MessageUpdateParams),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
def list(
self,
thread_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
run_id: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[Message]:
"""
Returns a list of messages for a given thread.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
run_id: Filter messages by the run ID that generated them.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/threads/{thread_id}/messages",
page=SyncCursorPage[Message],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
"run_id": run_id,
},
message_list_params.MessageListParams,
),
),
model=Message,
)
def delete(
self,
message_id: str,
*,
thread_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> MessageDeleted:
"""
Deletes a message.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._delete(
f"/threads/{thread_id}/messages/{message_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=MessageDeleted,
)
class AsyncMessages(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncMessagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncMessagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncMessagesWithStreamingResponse(self)
async def create(
self,
thread_id: str,
*,
content: Union[str, Iterable[MessageContentPartParam]],
role: Literal["user", "assistant"],
attachments: Optional[Iterable[message_create_params.Attachment]] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Create a message.
Args:
content: The text contents of the message.
role:
The role of the entity that is creating the message. Allowed values include:
- `user`: Indicates the message is sent by an actual user and should be used in
most cases to represent user-generated messages.
- `assistant`: Indicates the message is generated by the assistant. Use this
value to insert messages from the assistant into the conversation.
attachments: A list of files attached to the message, and the tools they should be added to.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/threads/{thread_id}/messages",
body=await async_maybe_transform(
{
"content": content,
"role": role,
"attachments": attachments,
"metadata": metadata,
},
message_create_params.MessageCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
async def retrieve(
self,
message_id: str,
*,
thread_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Retrieve a message.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/threads/{thread_id}/messages/{message_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
async def update(
self,
message_id: str,
*,
thread_id: str,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Message:
"""
Modifies a message.
Args:
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/threads/{thread_id}/messages/{message_id}",
body=await async_maybe_transform({"metadata": metadata}, message_update_params.MessageUpdateParams),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Message,
)
def list(
self,
thread_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
run_id: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[Message, AsyncCursorPage[Message]]:
"""
Returns a list of messages for a given thread.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
run_id: Filter messages by the run ID that generated them.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/threads/{thread_id}/messages",
page=AsyncCursorPage[Message],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
"run_id": run_id,
},
message_list_params.MessageListParams,
),
),
model=Message,
)
async def delete(
self,
message_id: str,
*,
thread_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> MessageDeleted:
"""
Deletes a message.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not message_id:
raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._delete(
f"/threads/{thread_id}/messages/{message_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=MessageDeleted,
)
class MessagesWithRawResponse:
def __init__(self, messages: Messages) -> None:
self._messages = messages
self.create = _legacy_response.to_raw_response_wrapper(
messages.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
messages.retrieve,
)
self.update = _legacy_response.to_raw_response_wrapper(
messages.update,
)
self.list = _legacy_response.to_raw_response_wrapper(
messages.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
messages.delete,
)
class AsyncMessagesWithRawResponse:
def __init__(self, messages: AsyncMessages) -> None:
self._messages = messages
self.create = _legacy_response.async_to_raw_response_wrapper(
messages.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
messages.retrieve,
)
self.update = _legacy_response.async_to_raw_response_wrapper(
messages.update,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
messages.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
messages.delete,
)
class MessagesWithStreamingResponse:
def __init__(self, messages: Messages) -> None:
self._messages = messages
self.create = to_streamed_response_wrapper(
messages.create,
)
self.retrieve = to_streamed_response_wrapper(
messages.retrieve,
)
self.update = to_streamed_response_wrapper(
messages.update,
)
self.list = to_streamed_response_wrapper(
messages.list,
)
self.delete = to_streamed_response_wrapper(
messages.delete,
)
class AsyncMessagesWithStreamingResponse:
def __init__(self, messages: AsyncMessages) -> None:
self._messages = messages
self.create = async_to_streamed_response_wrapper(
messages.create,
)
self.retrieve = async_to_streamed_response_wrapper(
messages.retrieve,
)
self.update = async_to_streamed_response_wrapper(
messages.update,
)
self.list = async_to_streamed_response_wrapper(
messages.list,
)
self.delete = async_to_streamed_response_wrapper(
messages.delete,
)

View File

@@ -0,0 +1,33 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .runs import (
Runs,
AsyncRuns,
RunsWithRawResponse,
AsyncRunsWithRawResponse,
RunsWithStreamingResponse,
AsyncRunsWithStreamingResponse,
)
from .steps import (
Steps,
AsyncSteps,
StepsWithRawResponse,
AsyncStepsWithRawResponse,
StepsWithStreamingResponse,
AsyncStepsWithStreamingResponse,
)
__all__ = [
"Steps",
"AsyncSteps",
"StepsWithRawResponse",
"AsyncStepsWithRawResponse",
"StepsWithStreamingResponse",
"AsyncStepsWithStreamingResponse",
"Runs",
"AsyncRuns",
"RunsWithRawResponse",
"AsyncRunsWithRawResponse",
"RunsWithStreamingResponse",
"AsyncRunsWithStreamingResponse",
]

View File

@@ -0,0 +1,381 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List
from typing_extensions import Literal
import httpx
from ..... import _legacy_response
from ....._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ....._utils import (
maybe_transform,
async_maybe_transform,
)
from ....._compat import cached_property
from ....._resource import SyncAPIResource, AsyncAPIResource
from ....._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .....pagination import SyncCursorPage, AsyncCursorPage
from ....._base_client import AsyncPaginator, make_request_options
from .....types.beta.threads.runs import step_list_params, step_retrieve_params
from .....types.beta.threads.runs.run_step import RunStep
from .....types.beta.threads.runs.run_step_include import RunStepInclude
__all__ = ["Steps", "AsyncSteps"]
class Steps(SyncAPIResource):
@cached_property
def with_raw_response(self) -> StepsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return StepsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> StepsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return StepsWithStreamingResponse(self)
def retrieve(
self,
step_id: str,
*,
thread_id: str,
run_id: str,
include: List[RunStepInclude] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> RunStep:
"""
Retrieves a run step.
Args:
include: A list of additional fields to include in the response. Currently the only
supported value is `step_details.tool_calls[*].file_search.results[*].content`
to fetch the file search result content.
See the
[file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search/customizing-file-search-settings)
for more information.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not run_id:
raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}")
if not step_id:
raise ValueError(f"Expected a non-empty value for `step_id` but received {step_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/threads/{thread_id}/runs/{run_id}/steps/{step_id}",
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform({"include": include}, step_retrieve_params.StepRetrieveParams),
),
cast_to=RunStep,
)
def list(
self,
run_id: str,
*,
thread_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
include: List[RunStepInclude] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[RunStep]:
"""
Returns a list of run steps belonging to a run.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
include: A list of additional fields to include in the response. Currently the only
supported value is `step_details.tool_calls[*].file_search.results[*].content`
to fetch the file search result content.
See the
[file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search/customizing-file-search-settings)
for more information.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not run_id:
raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/threads/{thread_id}/runs/{run_id}/steps",
page=SyncCursorPage[RunStep],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"include": include,
"limit": limit,
"order": order,
},
step_list_params.StepListParams,
),
),
model=RunStep,
)
class AsyncSteps(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncStepsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncStepsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncStepsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncStepsWithStreamingResponse(self)
async def retrieve(
self,
step_id: str,
*,
thread_id: str,
run_id: str,
include: List[RunStepInclude] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> RunStep:
"""
Retrieves a run step.
Args:
include: A list of additional fields to include in the response. Currently the only
supported value is `step_details.tool_calls[*].file_search.results[*].content`
to fetch the file search result content.
See the
[file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search/customizing-file-search-settings)
for more information.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not run_id:
raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}")
if not step_id:
raise ValueError(f"Expected a non-empty value for `step_id` but received {step_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/threads/{thread_id}/runs/{run_id}/steps/{step_id}",
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=await async_maybe_transform({"include": include}, step_retrieve_params.StepRetrieveParams),
),
cast_to=RunStep,
)
def list(
self,
run_id: str,
*,
thread_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
include: List[RunStepInclude] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[RunStep, AsyncCursorPage[RunStep]]:
"""
Returns a list of run steps belonging to a run.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
include: A list of additional fields to include in the response. Currently the only
supported value is `step_details.tool_calls[*].file_search.results[*].content`
to fetch the file search result content.
See the
[file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search/customizing-file-search-settings)
for more information.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not thread_id:
raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}")
if not run_id:
raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/threads/{thread_id}/runs/{run_id}/steps",
page=AsyncCursorPage[RunStep],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"include": include,
"limit": limit,
"order": order,
},
step_list_params.StepListParams,
),
),
model=RunStep,
)
class StepsWithRawResponse:
def __init__(self, steps: Steps) -> None:
self._steps = steps
self.retrieve = _legacy_response.to_raw_response_wrapper(
steps.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
steps.list,
)
class AsyncStepsWithRawResponse:
def __init__(self, steps: AsyncSteps) -> None:
self._steps = steps
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
steps.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
steps.list,
)
class StepsWithStreamingResponse:
def __init__(self, steps: Steps) -> None:
self._steps = steps
self.retrieve = to_streamed_response_wrapper(
steps.retrieve,
)
self.list = to_streamed_response_wrapper(
steps.list,
)
class AsyncStepsWithStreamingResponse:
def __init__(self, steps: AsyncSteps) -> None:
self._steps = steps
self.retrieve = async_to_streamed_response_wrapper(
steps.retrieve,
)
self.list = async_to_streamed_response_wrapper(
steps.list,
)

View File

@@ -0,0 +1,47 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .files import (
Files,
AsyncFiles,
FilesWithRawResponse,
AsyncFilesWithRawResponse,
FilesWithStreamingResponse,
AsyncFilesWithStreamingResponse,
)
from .file_batches import (
FileBatches,
AsyncFileBatches,
FileBatchesWithRawResponse,
AsyncFileBatchesWithRawResponse,
FileBatchesWithStreamingResponse,
AsyncFileBatchesWithStreamingResponse,
)
from .vector_stores import (
VectorStores,
AsyncVectorStores,
VectorStoresWithRawResponse,
AsyncVectorStoresWithRawResponse,
VectorStoresWithStreamingResponse,
AsyncVectorStoresWithStreamingResponse,
)
__all__ = [
"Files",
"AsyncFiles",
"FilesWithRawResponse",
"AsyncFilesWithRawResponse",
"FilesWithStreamingResponse",
"AsyncFilesWithStreamingResponse",
"FileBatches",
"AsyncFileBatches",
"FileBatchesWithRawResponse",
"AsyncFileBatchesWithRawResponse",
"FileBatchesWithStreamingResponse",
"AsyncFileBatchesWithStreamingResponse",
"VectorStores",
"AsyncVectorStores",
"VectorStoresWithRawResponse",
"AsyncVectorStoresWithRawResponse",
"VectorStoresWithStreamingResponse",
"AsyncVectorStoresWithStreamingResponse",
]

View File

@@ -0,0 +1,785 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import asyncio
from typing import List, Iterable
from typing_extensions import Literal
from concurrent.futures import Future, ThreadPoolExecutor, as_completed
import httpx
import sniffio
from .... import _legacy_response
from ....types import FileObject
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ...._utils import (
is_given,
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ....types.beta import FileChunkingStrategyParam
from ...._base_client import AsyncPaginator, make_request_options
from ....types.beta.vector_stores import file_batch_create_params, file_batch_list_files_params
from ....types.beta.file_chunking_strategy_param import FileChunkingStrategyParam
from ....types.beta.vector_stores.vector_store_file import VectorStoreFile
from ....types.beta.vector_stores.vector_store_file_batch import VectorStoreFileBatch
__all__ = ["FileBatches", "AsyncFileBatches"]
class FileBatches(SyncAPIResource):
@cached_property
def with_raw_response(self) -> FileBatchesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return FileBatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> FileBatchesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return FileBatchesWithStreamingResponse(self)
def create(
self,
vector_store_id: str,
*,
file_ids: List[str],
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Create a vector store file batch.
Args:
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}/file_batches",
body=maybe_transform(
{
"file_ids": file_ids,
"chunking_strategy": chunking_strategy,
},
file_batch_create_params.FileBatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def retrieve(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Retrieves a vector store file batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def cancel(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Cancel a vector store file batch.
This attempts to cancel the processing of
files in this batch as soon as possible.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
def create_and_poll(
self,
vector_store_id: str,
*,
file_ids: List[str],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Create a vector store batch and poll until all files have been processed."""
batch = self.create(
vector_store_id=vector_store_id,
file_ids=file_ids,
chunking_strategy=chunking_strategy,
)
# TODO: don't poll unless necessary??
return self.poll(
batch.id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
def list_files(
self,
batch_id: str,
*,
vector_store_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[VectorStoreFile]:
"""
Returns a list of vector store files in a batch.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
page=SyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_batch_list_files_params.FileBatchListFilesParams,
),
),
model=VectorStoreFile,
)
def poll(
self,
batch_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Wait for the given file batch to be processed.
Note: this will return even if one of the files failed to process, you need to
check batch.file_counts.failed_count to handle this case.
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = self.with_raw_response.retrieve(
batch_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
batch = response.parse()
if batch.file_counts.in_progress > 0:
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
self._sleep(poll_interval_ms / 1000)
continue
return batch
def upload_and_poll(
self,
vector_store_id: str,
*,
files: Iterable[FileTypes],
max_concurrency: int = 5,
file_ids: List[str] = [],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Uploads the given files concurrently and then creates a vector store file batch.
If you've already uploaded certain files that you want to include in this batch
then you can pass their IDs through the `file_ids` argument.
By default, if any file upload fails then an exception will be eagerly raised.
The number of concurrency uploads is configurable using the `max_concurrency`
parameter.
Note: this method only supports `asyncio` or `trio` as the backing async
runtime.
"""
results: list[FileObject] = []
with ThreadPoolExecutor(max_workers=max_concurrency) as executor:
futures: list[Future[FileObject]] = [
executor.submit(
self._client.files.create,
file=file,
purpose="assistants",
)
for file in files
]
for future in as_completed(futures):
exc = future.exception()
if exc:
raise exc
results.append(future.result())
batch = self.create_and_poll(
vector_store_id=vector_store_id,
file_ids=[*file_ids, *(f.id for f in results)],
poll_interval_ms=poll_interval_ms,
chunking_strategy=chunking_strategy,
)
return batch
class AsyncFileBatches(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncFileBatchesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncFileBatchesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncFileBatchesWithStreamingResponse(self)
async def create(
self,
vector_store_id: str,
*,
file_ids: List[str],
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Create a vector store file batch.
Args:
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}/file_batches",
body=await async_maybe_transform(
{
"file_ids": file_ids,
"chunking_strategy": chunking_strategy,
},
file_batch_create_params.FileBatchCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def retrieve(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""
Retrieves a vector store file batch.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def cancel(
self,
batch_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Cancel a vector store file batch.
This attempts to cancel the processing of
files in this batch as soon as possible.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileBatch,
)
async def create_and_poll(
self,
vector_store_id: str,
*,
file_ids: List[str],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Create a vector store batch and poll until all files have been processed."""
batch = await self.create(
vector_store_id=vector_store_id,
file_ids=file_ids,
chunking_strategy=chunking_strategy,
)
# TODO: don't poll unless necessary??
return await self.poll(
batch.id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
def list_files(
self,
batch_id: str,
*,
vector_store_id: str,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]:
"""
Returns a list of vector store files in a batch.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not batch_id:
raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
page=AsyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_batch_list_files_params.FileBatchListFilesParams,
),
),
model=VectorStoreFile,
)
async def poll(
self,
batch_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Wait for the given file batch to be processed.
Note: this will return even if one of the files failed to process, you need to
check batch.file_counts.failed_count to handle this case.
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = await self.with_raw_response.retrieve(
batch_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
batch = response.parse()
if batch.file_counts.in_progress > 0:
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
await self._sleep(poll_interval_ms / 1000)
continue
return batch
async def upload_and_poll(
self,
vector_store_id: str,
*,
files: Iterable[FileTypes],
max_concurrency: int = 5,
file_ids: List[str] = [],
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFileBatch:
"""Uploads the given files concurrently and then creates a vector store file batch.
If you've already uploaded certain files that you want to include in this batch
then you can pass their IDs through the `file_ids` argument.
By default, if any file upload fails then an exception will be eagerly raised.
The number of concurrency uploads is configurable using the `max_concurrency`
parameter.
Note: this method only supports `asyncio` or `trio` as the backing async
runtime.
"""
uploaded_files: list[FileObject] = []
async_library = sniffio.current_async_library()
if async_library == "asyncio":
async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None:
async with semaphore:
file_obj = await self._client.files.create(
file=file,
purpose="assistants",
)
uploaded_files.append(file_obj)
semaphore = asyncio.Semaphore(max_concurrency)
tasks = [asyncio_upload_file(semaphore, file) for file in files]
await asyncio.gather(*tasks)
elif async_library == "trio":
# We only import if the library is being used.
# We support Python 3.7 so are using an older version of trio that does not have type information
import trio # type: ignore # pyright: ignore[reportMissingTypeStubs]
async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None:
async with limiter:
file_obj = await self._client.files.create(
file=file,
purpose="assistants",
)
uploaded_files.append(file_obj)
limiter = trio.CapacityLimiter(max_concurrency)
async with trio.open_nursery() as nursery:
for file in files:
nursery.start_soon(trio_upload_file, limiter, file) # pyright: ignore [reportUnknownMemberType]
else:
raise RuntimeError(
f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported",
)
batch = await self.create_and_poll(
vector_store_id=vector_store_id,
file_ids=[*file_ids, *(f.id for f in uploaded_files)],
poll_interval_ms=poll_interval_ms,
chunking_strategy=chunking_strategy,
)
return batch
class FileBatchesWithRawResponse:
def __init__(self, file_batches: FileBatches) -> None:
self._file_batches = file_batches
self.create = _legacy_response.to_raw_response_wrapper(
file_batches.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
file_batches.retrieve,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
file_batches.cancel,
)
self.list_files = _legacy_response.to_raw_response_wrapper(
file_batches.list_files,
)
class AsyncFileBatchesWithRawResponse:
def __init__(self, file_batches: AsyncFileBatches) -> None:
self._file_batches = file_batches
self.create = _legacy_response.async_to_raw_response_wrapper(
file_batches.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
file_batches.retrieve,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
file_batches.cancel,
)
self.list_files = _legacy_response.async_to_raw_response_wrapper(
file_batches.list_files,
)
class FileBatchesWithStreamingResponse:
def __init__(self, file_batches: FileBatches) -> None:
self._file_batches = file_batches
self.create = to_streamed_response_wrapper(
file_batches.create,
)
self.retrieve = to_streamed_response_wrapper(
file_batches.retrieve,
)
self.cancel = to_streamed_response_wrapper(
file_batches.cancel,
)
self.list_files = to_streamed_response_wrapper(
file_batches.list_files,
)
class AsyncFileBatchesWithStreamingResponse:
def __init__(self, file_batches: AsyncFileBatches) -> None:
self._file_batches = file_batches
self.create = async_to_streamed_response_wrapper(
file_batches.create,
)
self.retrieve = async_to_streamed_response_wrapper(
file_batches.retrieve,
)
self.cancel = async_to_streamed_response_wrapper(
file_batches.cancel,
)
self.list_files = async_to_streamed_response_wrapper(
file_batches.list_files,
)

View File

@@ -0,0 +1,726 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import TYPE_CHECKING
from typing_extensions import Literal, assert_never
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ...._utils import (
is_given,
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ....types.beta import FileChunkingStrategyParam
from ...._base_client import AsyncPaginator, make_request_options
from ....types.beta.vector_stores import file_list_params, file_create_params
from ....types.beta.file_chunking_strategy_param import FileChunkingStrategyParam
from ....types.beta.vector_stores.vector_store_file import VectorStoreFile
from ....types.beta.vector_stores.vector_store_file_deleted import VectorStoreFileDeleted
__all__ = ["Files", "AsyncFiles"]
class Files(SyncAPIResource):
@cached_property
def with_raw_response(self) -> FilesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return FilesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> FilesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return FilesWithStreamingResponse(self)
def create(
self,
vector_store_id: str,
*,
file_id: str,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""
Create a vector store file by attaching a
[File](https://platform.openai.com/docs/api-reference/files) to a
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object).
Args:
file_id: A [File](https://platform.openai.com/docs/api-reference/files) ID that the
vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}/files",
body=maybe_transform(
{
"file_id": file_id,
"chunking_strategy": chunking_strategy,
},
file_create_params.FileCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFile,
)
def retrieve(
self,
file_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""
Retrieves a vector store file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/vector_stores/{vector_store_id}/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFile,
)
def list(
self,
vector_store_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[VectorStoreFile]:
"""
Returns a list of vector store files.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/files",
page=SyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_list_params.FileListParams,
),
),
model=VectorStoreFile,
)
def delete(
self,
file_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileDeleted:
"""Delete a vector store file.
This will remove the file from the vector store but
the file itself will not be deleted. To delete the file, use the
[delete file](https://platform.openai.com/docs/api-reference/files/delete)
endpoint.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._delete(
f"/vector_stores/{vector_store_id}/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileDeleted,
)
def create_and_poll(
self,
file_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Attach a file to the given vector store and wait for it to be processed."""
self.create(vector_store_id=vector_store_id, file_id=file_id, chunking_strategy=chunking_strategy)
return self.poll(
file_id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
def poll(
self,
file_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Wait for the vector store file to finish processing.
Note: this will return even if the file failed to process, you need to check
file.last_error and file.status to handle these cases
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = self.with_raw_response.retrieve(
file_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
file = response.parse()
if file.status == "in_progress":
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
self._sleep(poll_interval_ms / 1000)
elif file.status == "cancelled" or file.status == "completed" or file.status == "failed":
return file
else:
if TYPE_CHECKING: # type: ignore[unreachable]
assert_never(file.status)
else:
return file
def upload(
self,
*,
vector_store_id: str,
file: FileTypes,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Upload a file to the `files` API and then attach it to the given vector store.
Note the file will be asynchronously processed (you can use the alternative
polling helper method to wait for processing to complete).
"""
file_obj = self._client.files.create(file=file, purpose="assistants")
return self.create(vector_store_id=vector_store_id, file_id=file_obj.id, chunking_strategy=chunking_strategy)
def upload_and_poll(
self,
*,
vector_store_id: str,
file: FileTypes,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Add a file to a vector store and poll until processing is complete."""
file_obj = self._client.files.create(file=file, purpose="assistants")
return self.create_and_poll(
vector_store_id=vector_store_id,
file_id=file_obj.id,
chunking_strategy=chunking_strategy,
poll_interval_ms=poll_interval_ms,
)
class AsyncFiles(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncFilesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncFilesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncFilesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncFilesWithStreamingResponse(self)
async def create(
self,
vector_store_id: str,
*,
file_id: str,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""
Create a vector store file by attaching a
[File](https://platform.openai.com/docs/api-reference/files) to a
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object).
Args:
file_id: A [File](https://platform.openai.com/docs/api-reference/files) ID that the
vector store should use. Useful for tools like `file_search` that can access
files.
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}/files",
body=await async_maybe_transform(
{
"file_id": file_id,
"chunking_strategy": chunking_strategy,
},
file_create_params.FileCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFile,
)
async def retrieve(
self,
file_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""
Retrieves a vector store file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/vector_stores/{vector_store_id}/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFile,
)
def list(
self,
vector_store_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]:
"""
Returns a list of vector store files.
Args:
after: A cursor for use in pagination. `after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
f"/vector_stores/{vector_store_id}/files",
page=AsyncCursorPage[VectorStoreFile],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"filter": filter,
"limit": limit,
"order": order,
},
file_list_params.FileListParams,
),
),
model=VectorStoreFile,
)
async def delete(
self,
file_id: str,
*,
vector_store_id: str,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreFileDeleted:
"""Delete a vector store file.
This will remove the file from the vector store but
the file itself will not be deleted. To delete the file, use the
[delete file](https://platform.openai.com/docs/api-reference/files/delete)
endpoint.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._delete(
f"/vector_stores/{vector_store_id}/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreFileDeleted,
)
async def create_and_poll(
self,
file_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Attach a file to the given vector store and wait for it to be processed."""
await self.create(vector_store_id=vector_store_id, file_id=file_id, chunking_strategy=chunking_strategy)
return await self.poll(
file_id,
vector_store_id=vector_store_id,
poll_interval_ms=poll_interval_ms,
)
async def poll(
self,
file_id: str,
*,
vector_store_id: str,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Wait for the vector store file to finish processing.
Note: this will return even if the file failed to process, you need to check
file.last_error and file.status to handle these cases
"""
headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
if is_given(poll_interval_ms):
headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
while True:
response = await self.with_raw_response.retrieve(
file_id,
vector_store_id=vector_store_id,
extra_headers=headers,
)
file = response.parse()
if file.status == "in_progress":
if not is_given(poll_interval_ms):
from_header = response.headers.get("openai-poll-after-ms")
if from_header is not None:
poll_interval_ms = int(from_header)
else:
poll_interval_ms = 1000
await self._sleep(poll_interval_ms / 1000)
elif file.status == "cancelled" or file.status == "completed" or file.status == "failed":
return file
else:
if TYPE_CHECKING: # type: ignore[unreachable]
assert_never(file.status)
else:
return file
async def upload(
self,
*,
vector_store_id: str,
file: FileTypes,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Upload a file to the `files` API and then attach it to the given vector store.
Note the file will be asynchronously processed (you can use the alternative
polling helper method to wait for processing to complete).
"""
file_obj = await self._client.files.create(file=file, purpose="assistants")
return await self.create(
vector_store_id=vector_store_id, file_id=file_obj.id, chunking_strategy=chunking_strategy
)
async def upload_and_poll(
self,
*,
vector_store_id: str,
file: FileTypes,
poll_interval_ms: int | NotGiven = NOT_GIVEN,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
) -> VectorStoreFile:
"""Add a file to a vector store and poll until processing is complete."""
file_obj = await self._client.files.create(file=file, purpose="assistants")
return await self.create_and_poll(
vector_store_id=vector_store_id,
file_id=file_obj.id,
poll_interval_ms=poll_interval_ms,
chunking_strategy=chunking_strategy,
)
class FilesWithRawResponse:
def __init__(self, files: Files) -> None:
self._files = files
self.create = _legacy_response.to_raw_response_wrapper(
files.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
files.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
files.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
files.delete,
)
class AsyncFilesWithRawResponse:
def __init__(self, files: AsyncFiles) -> None:
self._files = files
self.create = _legacy_response.async_to_raw_response_wrapper(
files.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
files.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
files.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
files.delete,
)
class FilesWithStreamingResponse:
def __init__(self, files: Files) -> None:
self._files = files
self.create = to_streamed_response_wrapper(
files.create,
)
self.retrieve = to_streamed_response_wrapper(
files.retrieve,
)
self.list = to_streamed_response_wrapper(
files.list,
)
self.delete = to_streamed_response_wrapper(
files.delete,
)
class AsyncFilesWithStreamingResponse:
def __init__(self, files: AsyncFiles) -> None:
self._files = files
self.create = async_to_streamed_response_wrapper(
files.create,
)
self.retrieve = async_to_streamed_response_wrapper(
files.retrieve,
)
self.list = async_to_streamed_response_wrapper(
files.list,
)
self.delete = async_to_streamed_response_wrapper(
files.delete,
)

View File

@@ -0,0 +1,719 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Optional
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from .files import (
Files,
AsyncFiles,
FilesWithRawResponse,
AsyncFilesWithRawResponse,
FilesWithStreamingResponse,
AsyncFilesWithStreamingResponse,
)
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .file_batches import (
FileBatches,
AsyncFileBatches,
FileBatchesWithRawResponse,
AsyncFileBatchesWithRawResponse,
FileBatchesWithStreamingResponse,
AsyncFileBatchesWithStreamingResponse,
)
from ....pagination import SyncCursorPage, AsyncCursorPage
from ....types.beta import (
FileChunkingStrategyParam,
vector_store_list_params,
vector_store_create_params,
vector_store_update_params,
)
from ...._base_client import AsyncPaginator, make_request_options
from ....types.beta.vector_store import VectorStore
from ....types.beta.vector_store_deleted import VectorStoreDeleted
from ....types.beta.file_chunking_strategy_param import FileChunkingStrategyParam
__all__ = ["VectorStores", "AsyncVectorStores"]
class VectorStores(SyncAPIResource):
@cached_property
def files(self) -> Files:
return Files(self._client)
@cached_property
def file_batches(self) -> FileBatches:
return FileBatches(self._client)
@cached_property
def with_raw_response(self) -> VectorStoresWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return VectorStoresWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> VectorStoresWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return VectorStoresWithStreamingResponse(self)
def create(
self,
*,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
expires_after: vector_store_create_params.ExpiresAfter | NotGiven = NOT_GIVEN,
file_ids: List[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Create a vector store.
Args:
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
expires_after: The expiration policy for a vector store.
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the vector store.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
"/vector_stores",
body=maybe_transform(
{
"chunking_strategy": chunking_strategy,
"expires_after": expires_after,
"file_ids": file_ids,
"metadata": metadata,
"name": name,
},
vector_store_create_params.VectorStoreCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
def retrieve(
self,
vector_store_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Retrieves a vector store.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get(
f"/vector_stores/{vector_store_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
def update(
self,
vector_store_id: str,
*,
expires_after: Optional[vector_store_update_params.ExpiresAfter] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Modifies a vector store.
Args:
expires_after: The expiration policy for a vector store.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the vector store.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
f"/vector_stores/{vector_store_id}",
body=maybe_transform(
{
"expires_after": expires_after,
"metadata": metadata,
"name": name,
},
vector_store_update_params.VectorStoreUpdateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[VectorStore]:
"""Returns a list of vector stores.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
"/vector_stores",
page=SyncCursorPage[VectorStore],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
},
vector_store_list_params.VectorStoreListParams,
),
),
model=VectorStore,
)
def delete(
self,
vector_store_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreDeleted:
"""
Delete a vector store.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._delete(
f"/vector_stores/{vector_store_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreDeleted,
)
class AsyncVectorStores(AsyncAPIResource):
@cached_property
def files(self) -> AsyncFiles:
return AsyncFiles(self._client)
@cached_property
def file_batches(self) -> AsyncFileBatches:
return AsyncFileBatches(self._client)
@cached_property
def with_raw_response(self) -> AsyncVectorStoresWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncVectorStoresWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncVectorStoresWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncVectorStoresWithStreamingResponse(self)
async def create(
self,
*,
chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
expires_after: vector_store_create_params.ExpiresAfter | NotGiven = NOT_GIVEN,
file_ids: List[str] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Create a vector store.
Args:
chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
strategy. Only applicable if `file_ids` is non-empty.
expires_after: The expiration policy for a vector store.
file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
the vector store should use. Useful for tools like `file_search` that can access
files.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the vector store.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
"/vector_stores",
body=await async_maybe_transform(
{
"chunking_strategy": chunking_strategy,
"expires_after": expires_after,
"file_ids": file_ids,
"metadata": metadata,
"name": name,
},
vector_store_create_params.VectorStoreCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
async def retrieve(
self,
vector_store_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Retrieves a vector store.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._get(
f"/vector_stores/{vector_store_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
async def update(
self,
vector_store_id: str,
*,
expires_after: Optional[vector_store_update_params.ExpiresAfter] | NotGiven = NOT_GIVEN,
metadata: Optional[object] | NotGiven = NOT_GIVEN,
name: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStore:
"""
Modifies a vector store.
Args:
expires_after: The expiration policy for a vector store.
metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful
for storing additional information about the object in a structured format. Keys
can be a maximum of 64 characters long and values can be a maximum of 512
characters long.
name: The name of the vector store.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
f"/vector_stores/{vector_store_id}",
body=await async_maybe_transform(
{
"expires_after": expires_after,
"metadata": metadata,
"name": name,
},
vector_store_update_params.VectorStoreUpdateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStore,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
before: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[VectorStore, AsyncCursorPage[VectorStore]]:
"""Returns a list of vector stores.
Args:
after: A cursor for use in pagination.
`after` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include after=obj_foo in order to
fetch the next page of the list.
before: A cursor for use in pagination. `before` is an object ID that defines your place
in the list. For instance, if you make a list request and receive 100 objects,
ending with obj_foo, your subsequent call can include before=obj_foo in order to
fetch the previous page of the list.
limit: A limit on the number of objects to be returned. Limit can range between 1 and
100, and the default is 20.
order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._get_api_list(
"/vector_stores",
page=AsyncCursorPage[VectorStore],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"before": before,
"limit": limit,
"order": order,
},
vector_store_list_params.VectorStoreListParams,
),
),
model=VectorStore,
)
async def delete(
self,
vector_store_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> VectorStoreDeleted:
"""
Delete a vector store.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not vector_store_id:
raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._delete(
f"/vector_stores/{vector_store_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=VectorStoreDeleted,
)
class VectorStoresWithRawResponse:
def __init__(self, vector_stores: VectorStores) -> None:
self._vector_stores = vector_stores
self.create = _legacy_response.to_raw_response_wrapper(
vector_stores.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
vector_stores.retrieve,
)
self.update = _legacy_response.to_raw_response_wrapper(
vector_stores.update,
)
self.list = _legacy_response.to_raw_response_wrapper(
vector_stores.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
vector_stores.delete,
)
@cached_property
def files(self) -> FilesWithRawResponse:
return FilesWithRawResponse(self._vector_stores.files)
@cached_property
def file_batches(self) -> FileBatchesWithRawResponse:
return FileBatchesWithRawResponse(self._vector_stores.file_batches)
class AsyncVectorStoresWithRawResponse:
def __init__(self, vector_stores: AsyncVectorStores) -> None:
self._vector_stores = vector_stores
self.create = _legacy_response.async_to_raw_response_wrapper(
vector_stores.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
vector_stores.retrieve,
)
self.update = _legacy_response.async_to_raw_response_wrapper(
vector_stores.update,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
vector_stores.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
vector_stores.delete,
)
@cached_property
def files(self) -> AsyncFilesWithRawResponse:
return AsyncFilesWithRawResponse(self._vector_stores.files)
@cached_property
def file_batches(self) -> AsyncFileBatchesWithRawResponse:
return AsyncFileBatchesWithRawResponse(self._vector_stores.file_batches)
class VectorStoresWithStreamingResponse:
def __init__(self, vector_stores: VectorStores) -> None:
self._vector_stores = vector_stores
self.create = to_streamed_response_wrapper(
vector_stores.create,
)
self.retrieve = to_streamed_response_wrapper(
vector_stores.retrieve,
)
self.update = to_streamed_response_wrapper(
vector_stores.update,
)
self.list = to_streamed_response_wrapper(
vector_stores.list,
)
self.delete = to_streamed_response_wrapper(
vector_stores.delete,
)
@cached_property
def files(self) -> FilesWithStreamingResponse:
return FilesWithStreamingResponse(self._vector_stores.files)
@cached_property
def file_batches(self) -> FileBatchesWithStreamingResponse:
return FileBatchesWithStreamingResponse(self._vector_stores.file_batches)
class AsyncVectorStoresWithStreamingResponse:
def __init__(self, vector_stores: AsyncVectorStores) -> None:
self._vector_stores = vector_stores
self.create = async_to_streamed_response_wrapper(
vector_stores.create,
)
self.retrieve = async_to_streamed_response_wrapper(
vector_stores.retrieve,
)
self.update = async_to_streamed_response_wrapper(
vector_stores.update,
)
self.list = async_to_streamed_response_wrapper(
vector_stores.list,
)
self.delete = async_to_streamed_response_wrapper(
vector_stores.delete,
)
@cached_property
def files(self) -> AsyncFilesWithStreamingResponse:
return AsyncFilesWithStreamingResponse(self._vector_stores.files)
@cached_property
def file_batches(self) -> AsyncFileBatchesWithStreamingResponse:
return AsyncFileBatchesWithStreamingResponse(self._vector_stores.file_batches)

View File

@@ -0,0 +1,33 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .chat import (
Chat,
AsyncChat,
ChatWithRawResponse,
AsyncChatWithRawResponse,
ChatWithStreamingResponse,
AsyncChatWithStreamingResponse,
)
from .completions import (
Completions,
AsyncCompletions,
CompletionsWithRawResponse,
AsyncCompletionsWithRawResponse,
CompletionsWithStreamingResponse,
AsyncCompletionsWithStreamingResponse,
)
__all__ = [
"Completions",
"AsyncCompletions",
"CompletionsWithRawResponse",
"AsyncCompletionsWithRawResponse",
"CompletionsWithStreamingResponse",
"AsyncCompletionsWithStreamingResponse",
"Chat",
"AsyncChat",
"ChatWithRawResponse",
"AsyncChatWithRawResponse",
"ChatWithStreamingResponse",
"AsyncChatWithStreamingResponse",
]

View File

@@ -0,0 +1,102 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from .completions import (
Completions,
AsyncCompletions,
CompletionsWithRawResponse,
AsyncCompletionsWithRawResponse,
CompletionsWithStreamingResponse,
AsyncCompletionsWithStreamingResponse,
)
__all__ = ["Chat", "AsyncChat"]
class Chat(SyncAPIResource):
@cached_property
def completions(self) -> Completions:
return Completions(self._client)
@cached_property
def with_raw_response(self) -> ChatWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return ChatWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> ChatWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return ChatWithStreamingResponse(self)
class AsyncChat(AsyncAPIResource):
@cached_property
def completions(self) -> AsyncCompletions:
return AsyncCompletions(self._client)
@cached_property
def with_raw_response(self) -> AsyncChatWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncChatWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncChatWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncChatWithStreamingResponse(self)
class ChatWithRawResponse:
def __init__(self, chat: Chat) -> None:
self._chat = chat
@cached_property
def completions(self) -> CompletionsWithRawResponse:
return CompletionsWithRawResponse(self._chat.completions)
class AsyncChatWithRawResponse:
def __init__(self, chat: AsyncChat) -> None:
self._chat = chat
@cached_property
def completions(self) -> AsyncCompletionsWithRawResponse:
return AsyncCompletionsWithRawResponse(self._chat.completions)
class ChatWithStreamingResponse:
def __init__(self, chat: Chat) -> None:
self._chat = chat
@cached_property
def completions(self) -> CompletionsWithStreamingResponse:
return CompletionsWithStreamingResponse(self._chat.completions)
class AsyncChatWithStreamingResponse:
def __init__(self, chat: AsyncChat) -> None:
self._chat = chat
@cached_property
def completions(self) -> AsyncCompletionsWithStreamingResponse:
return AsyncCompletionsWithStreamingResponse(self._chat.completions)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,283 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import base64
from typing import List, Union, Iterable, cast
from typing_extensions import Literal
import httpx
from .. import _legacy_response
from ..types import embedding_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import is_given, maybe_transform
from .._compat import cached_property
from .._extras import numpy as np, has_numpy
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .._base_client import make_request_options
from ..types.embedding_model import EmbeddingModel
from ..types.create_embedding_response import CreateEmbeddingResponse
__all__ = ["Embeddings", "AsyncEmbeddings"]
class Embeddings(SyncAPIResource):
@cached_property
def with_raw_response(self) -> EmbeddingsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return EmbeddingsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> EmbeddingsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return EmbeddingsWithStreamingResponse(self)
def create(
self,
*,
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
model: Union[str, EmbeddingModel],
dimensions: int | NotGiven = NOT_GIVEN,
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
dimensions or less.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
dimensions: The number of dimensions the resulting output embeddings should have. Only
supported in `text-embedding-3` and later models.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"dimensions": dimensions,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class AsyncEmbeddings(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncEmbeddingsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncEmbeddingsWithStreamingResponse(self)
async def create(
self,
*,
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
model: Union[str, EmbeddingModel],
dimensions: int | NotGiven = NOT_GIVEN,
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
dimensions or less.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
dimensions: The number of dimensions the resulting output embeddings should have. Only
supported in `text-embedding-3` and later models.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"dimensions": dimensions,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return await self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class EmbeddingsWithRawResponse:
def __init__(self, embeddings: Embeddings) -> None:
self._embeddings = embeddings
self.create = _legacy_response.to_raw_response_wrapper(
embeddings.create,
)
class AsyncEmbeddingsWithRawResponse:
def __init__(self, embeddings: AsyncEmbeddings) -> None:
self._embeddings = embeddings
self.create = _legacy_response.async_to_raw_response_wrapper(
embeddings.create,
)
class EmbeddingsWithStreamingResponse:
def __init__(self, embeddings: Embeddings) -> None:
self._embeddings = embeddings
self.create = to_streamed_response_wrapper(
embeddings.create,
)
class AsyncEmbeddingsWithStreamingResponse:
def __init__(self, embeddings: AsyncEmbeddings) -> None:
self._embeddings = embeddings
self.create = async_to_streamed_response_wrapper(
embeddings.create,
)

View File

@@ -0,0 +1,731 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import time
import typing_extensions
from typing import Mapping, cast
import httpx
from .. import _legacy_response
from ..types import FilePurpose, file_list_params, file_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from .._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import (
StreamedBinaryAPIResponse,
AsyncStreamedBinaryAPIResponse,
to_streamed_response_wrapper,
async_to_streamed_response_wrapper,
to_custom_streamed_response_wrapper,
async_to_custom_streamed_response_wrapper,
)
from ..pagination import SyncPage, AsyncPage
from .._base_client import (
AsyncPaginator,
make_request_options,
)
from ..types.file_object import FileObject
from ..types.file_deleted import FileDeleted
from ..types.file_purpose import FilePurpose
__all__ = ["Files", "AsyncFiles"]
class Files(SyncAPIResource):
@cached_property
def with_raw_response(self) -> FilesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return FilesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> FilesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return FilesWithStreamingResponse(self)
def create(
self,
*,
file: FileTypes,
purpose: FilePurpose,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileObject:
"""Upload a file that can be used across various endpoints.
Individual files can be
up to 512 MB, and the size of all files uploaded by one organization can be up
to 100 GB.
The Assistants API supports files up to 2 million tokens and of specific file
types. See the
[Assistants Tools guide](https://platform.openai.com/docs/assistants/tools) for
details.
The Fine-tuning API only supports `.jsonl` files. The input also has certain
required formats for fine-tuning
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
models.
The Batch API only supports `.jsonl` files up to 100 MB in size. The input also
has a specific required
[format](https://platform.openai.com/docs/api-reference/batch/request-input).
Please [contact us](https://help.openai.com/) if you need to increase these
storage limits.
Args:
file: The File object (not file name) to be uploaded.
purpose: The intended purpose of the uploaded file.
Use "assistants" for
[Assistants](https://platform.openai.com/docs/api-reference/assistants) and
[Message](https://platform.openai.com/docs/api-reference/messages) files,
"vision" for Assistants image file inputs, "batch" for
[Batch API](https://platform.openai.com/docs/guides/batch), and "fine-tune" for
[Fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"purpose": purpose,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
"/files",
body=maybe_transform(body, file_create_params.FileCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileObject,
)
def retrieve(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileObject:
"""
Returns information about a specific file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return self._get(
f"/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileObject,
)
def list(
self,
*,
purpose: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncPage[FileObject]:
"""
Returns a list of files that belong to the user's organization.
Args:
purpose: Only return files with the given purpose.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/files",
page=SyncPage[FileObject],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform({"purpose": purpose}, file_list_params.FileListParams),
),
model=FileObject,
)
def delete(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileDeleted:
"""
Delete a file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return self._delete(
f"/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileDeleted,
)
def content(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> _legacy_response.HttpxBinaryResponseContent:
"""
Returns the contents of the specified file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"Accept": "application/binary", **(extra_headers or {})}
return self._get(
f"/files/{file_id}/content",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_legacy_response.HttpxBinaryResponseContent,
)
@typing_extensions.deprecated("The `.content()` method should be used instead")
def retrieve_content(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str:
"""
Returns the contents of the specified file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return self._get(
f"/files/{file_id}/content",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=str,
)
def wait_for_processing(
self,
id: str,
*,
poll_interval: float = 5.0,
max_wait_seconds: float = 30 * 60,
) -> FileObject:
"""Waits for the given file to be processed, default timeout is 30 mins."""
TERMINAL_STATES = {"processed", "error", "deleted"}
start = time.time()
file = self.retrieve(id)
while file.status not in TERMINAL_STATES:
self._sleep(poll_interval)
file = self.retrieve(id)
if time.time() - start > max_wait_seconds:
raise RuntimeError(
f"Giving up on waiting for file {id} to finish processing after {max_wait_seconds} seconds."
)
return file
class AsyncFiles(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncFilesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncFilesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncFilesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncFilesWithStreamingResponse(self)
async def create(
self,
*,
file: FileTypes,
purpose: FilePurpose,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileObject:
"""Upload a file that can be used across various endpoints.
Individual files can be
up to 512 MB, and the size of all files uploaded by one organization can be up
to 100 GB.
The Assistants API supports files up to 2 million tokens and of specific file
types. See the
[Assistants Tools guide](https://platform.openai.com/docs/assistants/tools) for
details.
The Fine-tuning API only supports `.jsonl` files. The input also has certain
required formats for fine-tuning
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
models.
The Batch API only supports `.jsonl` files up to 100 MB in size. The input also
has a specific required
[format](https://platform.openai.com/docs/api-reference/batch/request-input).
Please [contact us](https://help.openai.com/) if you need to increase these
storage limits.
Args:
file: The File object (not file name) to be uploaded.
purpose: The intended purpose of the uploaded file.
Use "assistants" for
[Assistants](https://platform.openai.com/docs/api-reference/assistants) and
[Message](https://platform.openai.com/docs/api-reference/messages) files,
"vision" for Assistants image file inputs, "batch" for
[Batch API](https://platform.openai.com/docs/guides/batch), and "fine-tune" for
[Fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"purpose": purpose,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/files",
body=await async_maybe_transform(body, file_create_params.FileCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileObject,
)
async def retrieve(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileObject:
"""
Returns information about a specific file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return await self._get(
f"/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileObject,
)
def list(
self,
*,
purpose: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FileObject, AsyncPage[FileObject]]:
"""
Returns a list of files that belong to the user's organization.
Args:
purpose: Only return files with the given purpose.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/files",
page=AsyncPage[FileObject],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform({"purpose": purpose}, file_list_params.FileListParams),
),
model=FileObject,
)
async def delete(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FileDeleted:
"""
Delete a file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return await self._delete(
f"/files/{file_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FileDeleted,
)
async def content(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> _legacy_response.HttpxBinaryResponseContent:
"""
Returns the contents of the specified file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
extra_headers = {"Accept": "application/binary", **(extra_headers or {})}
return await self._get(
f"/files/{file_id}/content",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=_legacy_response.HttpxBinaryResponseContent,
)
@typing_extensions.deprecated("The `.content()` method should be used instead")
async def retrieve_content(
self,
file_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> str:
"""
Returns the contents of the specified file.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not file_id:
raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
return await self._get(
f"/files/{file_id}/content",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=str,
)
async def wait_for_processing(
self,
id: str,
*,
poll_interval: float = 5.0,
max_wait_seconds: float = 30 * 60,
) -> FileObject:
"""Waits for the given file to be processed, default timeout is 30 mins."""
TERMINAL_STATES = {"processed", "error", "deleted"}
start = time.time()
file = await self.retrieve(id)
while file.status not in TERMINAL_STATES:
await self._sleep(poll_interval)
file = await self.retrieve(id)
if time.time() - start > max_wait_seconds:
raise RuntimeError(
f"Giving up on waiting for file {id} to finish processing after {max_wait_seconds} seconds."
)
return file
class FilesWithRawResponse:
def __init__(self, files: Files) -> None:
self._files = files
self.create = _legacy_response.to_raw_response_wrapper(
files.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
files.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
files.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
files.delete,
)
self.content = _legacy_response.to_raw_response_wrapper(
files.content,
)
self.retrieve_content = ( # pyright: ignore[reportDeprecated]
_legacy_response.to_raw_response_wrapper(
files.retrieve_content # pyright: ignore[reportDeprecated],
)
)
class AsyncFilesWithRawResponse:
def __init__(self, files: AsyncFiles) -> None:
self._files = files
self.create = _legacy_response.async_to_raw_response_wrapper(
files.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
files.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
files.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
files.delete,
)
self.content = _legacy_response.async_to_raw_response_wrapper(
files.content,
)
self.retrieve_content = ( # pyright: ignore[reportDeprecated]
_legacy_response.async_to_raw_response_wrapper(
files.retrieve_content # pyright: ignore[reportDeprecated],
)
)
class FilesWithStreamingResponse:
def __init__(self, files: Files) -> None:
self._files = files
self.create = to_streamed_response_wrapper(
files.create,
)
self.retrieve = to_streamed_response_wrapper(
files.retrieve,
)
self.list = to_streamed_response_wrapper(
files.list,
)
self.delete = to_streamed_response_wrapper(
files.delete,
)
self.content = to_custom_streamed_response_wrapper(
files.content,
StreamedBinaryAPIResponse,
)
self.retrieve_content = ( # pyright: ignore[reportDeprecated]
to_streamed_response_wrapper(
files.retrieve_content # pyright: ignore[reportDeprecated],
)
)
class AsyncFilesWithStreamingResponse:
def __init__(self, files: AsyncFiles) -> None:
self._files = files
self.create = async_to_streamed_response_wrapper(
files.create,
)
self.retrieve = async_to_streamed_response_wrapper(
files.retrieve,
)
self.list = async_to_streamed_response_wrapper(
files.list,
)
self.delete = async_to_streamed_response_wrapper(
files.delete,
)
self.content = async_to_custom_streamed_response_wrapper(
files.content,
AsyncStreamedBinaryAPIResponse,
)
self.retrieve_content = ( # pyright: ignore[reportDeprecated]
async_to_streamed_response_wrapper(
files.retrieve_content # pyright: ignore[reportDeprecated],
)
)

View File

@@ -0,0 +1,33 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .jobs import (
Jobs,
AsyncJobs,
JobsWithRawResponse,
AsyncJobsWithRawResponse,
JobsWithStreamingResponse,
AsyncJobsWithStreamingResponse,
)
from .fine_tuning import (
FineTuning,
AsyncFineTuning,
FineTuningWithRawResponse,
AsyncFineTuningWithRawResponse,
FineTuningWithStreamingResponse,
AsyncFineTuningWithStreamingResponse,
)
__all__ = [
"Jobs",
"AsyncJobs",
"JobsWithRawResponse",
"AsyncJobsWithRawResponse",
"JobsWithStreamingResponse",
"AsyncJobsWithStreamingResponse",
"FineTuning",
"AsyncFineTuning",
"FineTuningWithRawResponse",
"AsyncFineTuningWithRawResponse",
"FineTuningWithStreamingResponse",
"AsyncFineTuningWithStreamingResponse",
]

View File

@@ -0,0 +1,103 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from .jobs import (
Jobs,
AsyncJobs,
JobsWithRawResponse,
AsyncJobsWithRawResponse,
JobsWithStreamingResponse,
AsyncJobsWithStreamingResponse,
)
from ..._compat import cached_property
from .jobs.jobs import Jobs, AsyncJobs
from ..._resource import SyncAPIResource, AsyncAPIResource
__all__ = ["FineTuning", "AsyncFineTuning"]
class FineTuning(SyncAPIResource):
@cached_property
def jobs(self) -> Jobs:
return Jobs(self._client)
@cached_property
def with_raw_response(self) -> FineTuningWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return FineTuningWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> FineTuningWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return FineTuningWithStreamingResponse(self)
class AsyncFineTuning(AsyncAPIResource):
@cached_property
def jobs(self) -> AsyncJobs:
return AsyncJobs(self._client)
@cached_property
def with_raw_response(self) -> AsyncFineTuningWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncFineTuningWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncFineTuningWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncFineTuningWithStreamingResponse(self)
class FineTuningWithRawResponse:
def __init__(self, fine_tuning: FineTuning) -> None:
self._fine_tuning = fine_tuning
@cached_property
def jobs(self) -> JobsWithRawResponse:
return JobsWithRawResponse(self._fine_tuning.jobs)
class AsyncFineTuningWithRawResponse:
def __init__(self, fine_tuning: AsyncFineTuning) -> None:
self._fine_tuning = fine_tuning
@cached_property
def jobs(self) -> AsyncJobsWithRawResponse:
return AsyncJobsWithRawResponse(self._fine_tuning.jobs)
class FineTuningWithStreamingResponse:
def __init__(self, fine_tuning: FineTuning) -> None:
self._fine_tuning = fine_tuning
@cached_property
def jobs(self) -> JobsWithStreamingResponse:
return JobsWithStreamingResponse(self._fine_tuning.jobs)
class AsyncFineTuningWithStreamingResponse:
def __init__(self, fine_tuning: AsyncFineTuning) -> None:
self._fine_tuning = fine_tuning
@cached_property
def jobs(self) -> AsyncJobsWithStreamingResponse:
return AsyncJobsWithStreamingResponse(self._fine_tuning.jobs)

View File

@@ -0,0 +1,33 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .jobs import (
Jobs,
AsyncJobs,
JobsWithRawResponse,
AsyncJobsWithRawResponse,
JobsWithStreamingResponse,
AsyncJobsWithStreamingResponse,
)
from .checkpoints import (
Checkpoints,
AsyncCheckpoints,
CheckpointsWithRawResponse,
AsyncCheckpointsWithRawResponse,
CheckpointsWithStreamingResponse,
AsyncCheckpointsWithStreamingResponse,
)
__all__ = [
"Checkpoints",
"AsyncCheckpoints",
"CheckpointsWithRawResponse",
"AsyncCheckpointsWithRawResponse",
"CheckpointsWithStreamingResponse",
"AsyncCheckpointsWithStreamingResponse",
"Jobs",
"AsyncJobs",
"JobsWithRawResponse",
"AsyncJobsWithRawResponse",
"JobsWithStreamingResponse",
"AsyncJobsWithStreamingResponse",
]

View File

@@ -0,0 +1,199 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import maybe_transform
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ...._base_client import (
AsyncPaginator,
make_request_options,
)
from ....types.fine_tuning.jobs import checkpoint_list_params
from ....types.fine_tuning.jobs.fine_tuning_job_checkpoint import FineTuningJobCheckpoint
__all__ = ["Checkpoints", "AsyncCheckpoints"]
class Checkpoints(SyncAPIResource):
@cached_property
def with_raw_response(self) -> CheckpointsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return CheckpointsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> CheckpointsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return CheckpointsWithStreamingResponse(self)
def list(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[FineTuningJobCheckpoint]:
"""
List checkpoints for a fine-tuning job.
Args:
after: Identifier for the last checkpoint ID from the previous pagination request.
limit: Number of checkpoints to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/checkpoints",
page=SyncCursorPage[FineTuningJobCheckpoint],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
checkpoint_list_params.CheckpointListParams,
),
),
model=FineTuningJobCheckpoint,
)
class AsyncCheckpoints(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncCheckpointsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncCheckpointsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncCheckpointsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncCheckpointsWithStreamingResponse(self)
def list(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FineTuningJobCheckpoint, AsyncCursorPage[FineTuningJobCheckpoint]]:
"""
List checkpoints for a fine-tuning job.
Args:
after: Identifier for the last checkpoint ID from the previous pagination request.
limit: Number of checkpoints to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/checkpoints",
page=AsyncCursorPage[FineTuningJobCheckpoint],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
checkpoint_list_params.CheckpointListParams,
),
),
model=FineTuningJobCheckpoint,
)
class CheckpointsWithRawResponse:
def __init__(self, checkpoints: Checkpoints) -> None:
self._checkpoints = checkpoints
self.list = _legacy_response.to_raw_response_wrapper(
checkpoints.list,
)
class AsyncCheckpointsWithRawResponse:
def __init__(self, checkpoints: AsyncCheckpoints) -> None:
self._checkpoints = checkpoints
self.list = _legacy_response.async_to_raw_response_wrapper(
checkpoints.list,
)
class CheckpointsWithStreamingResponse:
def __init__(self, checkpoints: Checkpoints) -> None:
self._checkpoints = checkpoints
self.list = to_streamed_response_wrapper(
checkpoints.list,
)
class AsyncCheckpointsWithStreamingResponse:
def __init__(self, checkpoints: AsyncCheckpoints) -> None:
self._checkpoints = checkpoints
self.list = async_to_streamed_response_wrapper(
checkpoints.list,
)

View File

@@ -0,0 +1,718 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union, Iterable, Optional
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from .checkpoints import (
Checkpoints,
AsyncCheckpoints,
CheckpointsWithRawResponse,
AsyncCheckpointsWithRawResponse,
CheckpointsWithStreamingResponse,
AsyncCheckpointsWithStreamingResponse,
)
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ....pagination import SyncCursorPage, AsyncCursorPage
from ...._base_client import (
AsyncPaginator,
make_request_options,
)
from ....types.fine_tuning import job_list_params, job_create_params, job_list_events_params
from ....types.fine_tuning.fine_tuning_job import FineTuningJob
from ....types.fine_tuning.fine_tuning_job_event import FineTuningJobEvent
__all__ = ["Jobs", "AsyncJobs"]
class Jobs(SyncAPIResource):
@cached_property
def checkpoints(self) -> Checkpoints:
return Checkpoints(self._client)
@cached_property
def with_raw_response(self) -> JobsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return JobsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> JobsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return JobsWithStreamingResponse(self)
def create(
self,
*,
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]],
training_file: str,
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Creates a fine-tuning job which begins the process of creating a new model from
a given dataset.
Response includes details of the enqueued job including job status and the name
of the fine-tuned models once complete.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
model: The name of the model to fine-tune. You can select one of the
[supported models](https://platform.openai.com/docs/guides/fine-tuning/which-models-can-be-fine-tuned).
training_file: The ID of an uploaded file that contains training data.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload
your file with the purpose `fine-tune`.
The contents of the file should differ depending on if the model uses the
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
format.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
hyperparameters: The hyperparameters used for the fine-tuning job.
integrations: A list of integrations to enable for your fine-tuning job.
seed: The seed controls the reproducibility of the job. Passing in the same seed and
job parameters should produce the same results, but may differ in rare cases. If
a seed is not specified, one will be generated for you.
suffix: A string of up to 64 characters that will be added to your fine-tuned model
name.
For example, a `suffix` of "custom-model-name" would produce a model name like
`ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
validation_file: The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation metrics
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
results file. The same data should not be present in both train and validation
files.
Your dataset must be formatted as a JSONL file. You must upload your file with
the purpose `fine-tune`.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/fine_tuning/jobs",
body=maybe_transform(
{
"model": model,
"training_file": training_file,
"hyperparameters": hyperparameters,
"integrations": integrations,
"seed": seed,
"suffix": suffix,
"validation_file": validation_file,
},
job_create_params.JobCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def retrieve(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Get info about a fine-tuning job.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get(
f"/fine_tuning/jobs/{fine_tuning_job_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[FineTuningJob]:
"""
List your organization's fine-tuning jobs
Args:
after: Identifier for the last job from the previous pagination request.
limit: Number of fine-tuning jobs to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/fine_tuning/jobs",
page=SyncCursorPage[FineTuningJob],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_params.JobListParams,
),
),
model=FineTuningJob,
)
def cancel(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Immediately cancel a fine-tune job.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._post(
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list_events(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncCursorPage[FineTuningJobEvent]:
"""
Get status updates for a fine-tuning job.
Args:
after: Identifier for the last event from the previous pagination request.
limit: Number of events to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
page=SyncCursorPage[FineTuningJobEvent],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_events_params.JobListEventsParams,
),
),
model=FineTuningJobEvent,
)
class AsyncJobs(AsyncAPIResource):
@cached_property
def checkpoints(self) -> AsyncCheckpoints:
return AsyncCheckpoints(self._client)
@cached_property
def with_raw_response(self) -> AsyncJobsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncJobsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncJobsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncJobsWithStreamingResponse(self)
async def create(
self,
*,
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]],
training_file: str,
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Creates a fine-tuning job which begins the process of creating a new model from
a given dataset.
Response includes details of the enqueued job including job status and the name
of the fine-tuned models once complete.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
model: The name of the model to fine-tune. You can select one of the
[supported models](https://platform.openai.com/docs/guides/fine-tuning/which-models-can-be-fine-tuned).
training_file: The ID of an uploaded file that contains training data.
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload
your file with the purpose `fine-tune`.
The contents of the file should differ depending on if the model uses the
[chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
[completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
format.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
hyperparameters: The hyperparameters used for the fine-tuning job.
integrations: A list of integrations to enable for your fine-tuning job.
seed: The seed controls the reproducibility of the job. Passing in the same seed and
job parameters should produce the same results, but may differ in rare cases. If
a seed is not specified, one will be generated for you.
suffix: A string of up to 64 characters that will be added to your fine-tuned model
name.
For example, a `suffix` of "custom-model-name" would produce a model name like
`ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
validation_file: The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation metrics
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
results file. The same data should not be present in both train and validation
files.
Your dataset must be formatted as a JSONL file. You must upload your file with
the purpose `fine-tune`.
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
for more details.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/fine_tuning/jobs",
body=await async_maybe_transform(
{
"model": model,
"training_file": training_file,
"hyperparameters": hyperparameters,
"integrations": integrations,
"seed": seed,
"suffix": suffix,
"validation_file": validation_file,
},
job_create_params.JobCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
async def retrieve(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Get info about a fine-tuning job.
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return await self._get(
f"/fine_tuning/jobs/{fine_tuning_job_id}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list(
self,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FineTuningJob, AsyncCursorPage[FineTuningJob]]:
"""
List your organization's fine-tuning jobs
Args:
after: Identifier for the last job from the previous pagination request.
limit: Number of fine-tuning jobs to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._get_api_list(
"/fine_tuning/jobs",
page=AsyncCursorPage[FineTuningJob],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_params.JobListParams,
),
),
model=FineTuningJob,
)
async def cancel(
self,
fine_tuning_job_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> FineTuningJob:
"""
Immediately cancel a fine-tune job.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return await self._post(
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=FineTuningJob,
)
def list_events(
self,
fine_tuning_job_id: str,
*,
after: str | NotGiven = NOT_GIVEN,
limit: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[FineTuningJobEvent, AsyncCursorPage[FineTuningJobEvent]]:
"""
Get status updates for a fine-tuning job.
Args:
after: Identifier for the last event from the previous pagination request.
limit: Number of events to retrieve.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not fine_tuning_job_id:
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
return self._get_api_list(
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
page=AsyncCursorPage[FineTuningJobEvent],
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
query=maybe_transform(
{
"after": after,
"limit": limit,
},
job_list_events_params.JobListEventsParams,
),
),
model=FineTuningJobEvent,
)
class JobsWithRawResponse:
def __init__(self, jobs: Jobs) -> None:
self._jobs = jobs
self.create = _legacy_response.to_raw_response_wrapper(
jobs.create,
)
self.retrieve = _legacy_response.to_raw_response_wrapper(
jobs.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
jobs.list,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
jobs.cancel,
)
self.list_events = _legacy_response.to_raw_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> CheckpointsWithRawResponse:
return CheckpointsWithRawResponse(self._jobs.checkpoints)
class AsyncJobsWithRawResponse:
def __init__(self, jobs: AsyncJobs) -> None:
self._jobs = jobs
self.create = _legacy_response.async_to_raw_response_wrapper(
jobs.create,
)
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
jobs.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
jobs.list,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
jobs.cancel,
)
self.list_events = _legacy_response.async_to_raw_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> AsyncCheckpointsWithRawResponse:
return AsyncCheckpointsWithRawResponse(self._jobs.checkpoints)
class JobsWithStreamingResponse:
def __init__(self, jobs: Jobs) -> None:
self._jobs = jobs
self.create = to_streamed_response_wrapper(
jobs.create,
)
self.retrieve = to_streamed_response_wrapper(
jobs.retrieve,
)
self.list = to_streamed_response_wrapper(
jobs.list,
)
self.cancel = to_streamed_response_wrapper(
jobs.cancel,
)
self.list_events = to_streamed_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> CheckpointsWithStreamingResponse:
return CheckpointsWithStreamingResponse(self._jobs.checkpoints)
class AsyncJobsWithStreamingResponse:
def __init__(self, jobs: AsyncJobs) -> None:
self._jobs = jobs
self.create = async_to_streamed_response_wrapper(
jobs.create,
)
self.retrieve = async_to_streamed_response_wrapper(
jobs.retrieve,
)
self.list = async_to_streamed_response_wrapper(
jobs.list,
)
self.cancel = async_to_streamed_response_wrapper(
jobs.cancel,
)
self.list_events = async_to_streamed_response_wrapper(
jobs.list_events,
)
@cached_property
def checkpoints(self) -> AsyncCheckpointsWithStreamingResponse:
return AsyncCheckpointsWithStreamingResponse(self._jobs.checkpoints)

View File

@@ -0,0 +1,600 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Union, Mapping, Optional, cast
from typing_extensions import Literal
import httpx
from .. import _legacy_response
from ..types import image_edit_params, image_generate_params, image_create_variation_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from .._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .._base_client import make_request_options
from ..types.image_model import ImageModel
from ..types.images_response import ImagesResponse
__all__ = ["Images", "AsyncImages"]
class Images(SyncAPIResource):
@cached_property
def with_raw_response(self) -> ImagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return ImagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> ImagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return ImagesWithStreamingResponse(self)
def create_variation(
self,
*,
image: FileTypes,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates a variation of a given image.
Args:
image: The image to use as the basis for the variation(s). Must be a valid PNG file,
less than 4MB, and square.
model: The model to use for image generation. Only `dall-e-2` is supported at this
time.
n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only
`n=1` is supported.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"image": image,
"model": model,
"n": n,
"response_format": response_format,
"size": size,
"user": user,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["image"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
"/images/variations",
body=maybe_transform(body, image_create_variation_params.ImageCreateVariationParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
def edit(
self,
*,
image: FileTypes,
prompt: str,
mask: FileTypes | NotGiven = NOT_GIVEN,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates an edited or extended image given an original image and a prompt.
Args:
image: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask
is not provided, image must have transparency, which will be used as the mask.
prompt: A text description of the desired image(s). The maximum length is 1000
characters.
mask: An additional image whose fully transparent areas (e.g. where alpha is zero)
indicate where `image` should be edited. Must be a valid PNG file, less than
4MB, and have the same dimensions as `image`.
model: The model to use for image generation. Only `dall-e-2` is supported at this
time.
n: The number of images to generate. Must be between 1 and 10.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"image": image,
"prompt": prompt,
"mask": mask,
"model": model,
"n": n,
"response_format": response_format,
"size": size,
"user": user,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["image"], ["mask"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
"/images/edits",
body=maybe_transform(body, image_edit_params.ImageEditParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
def generate(
self,
*,
prompt: str,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
quality: Literal["standard", "hd"] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN,
style: Optional[Literal["vivid", "natural"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates an image given a prompt.
Args:
prompt: A text description of the desired image(s). The maximum length is 1000
characters for `dall-e-2` and 4000 characters for `dall-e-3`.
model: The model to use for image generation.
n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only
`n=1` is supported.
quality: The quality of the image that will be generated. `hd` creates images with finer
details and greater consistency across the image. This param is only supported
for `dall-e-3`.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or
`1024x1792` for `dall-e-3` models.
style: The style of the generated images. Must be one of `vivid` or `natural`. Vivid
causes the model to lean towards generating hyper-real and dramatic images.
Natural causes the model to produce more natural, less hyper-real looking
images. This param is only supported for `dall-e-3`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/images/generations",
body=maybe_transform(
{
"prompt": prompt,
"model": model,
"n": n,
"quality": quality,
"response_format": response_format,
"size": size,
"style": style,
"user": user,
},
image_generate_params.ImageGenerateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
class AsyncImages(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncImagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncImagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncImagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncImagesWithStreamingResponse(self)
async def create_variation(
self,
*,
image: FileTypes,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates a variation of a given image.
Args:
image: The image to use as the basis for the variation(s). Must be a valid PNG file,
less than 4MB, and square.
model: The model to use for image generation. Only `dall-e-2` is supported at this
time.
n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only
`n=1` is supported.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"image": image,
"model": model,
"n": n,
"response_format": response_format,
"size": size,
"user": user,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["image"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/images/variations",
body=await async_maybe_transform(body, image_create_variation_params.ImageCreateVariationParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
async def edit(
self,
*,
image: FileTypes,
prompt: str,
mask: FileTypes | NotGiven = NOT_GIVEN,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates an edited or extended image given an original image and a prompt.
Args:
image: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask
is not provided, image must have transparency, which will be used as the mask.
prompt: A text description of the desired image(s). The maximum length is 1000
characters.
mask: An additional image whose fully transparent areas (e.g. where alpha is zero)
indicate where `image` should be edited. Must be a valid PNG file, less than
4MB, and have the same dimensions as `image`.
model: The model to use for image generation. Only `dall-e-2` is supported at this
time.
n: The number of images to generate. Must be between 1 and 10.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"image": image,
"prompt": prompt,
"mask": mask,
"model": model,
"n": n,
"response_format": response_format,
"size": size,
"user": user,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["image"], ["mask"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/images/edits",
body=await async_maybe_transform(body, image_edit_params.ImageEditParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
async def generate(
self,
*,
prompt: str,
model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
quality: Literal["standard", "hd"] | NotGiven = NOT_GIVEN,
response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN,
size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN,
style: Optional[Literal["vivid", "natural"]] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponse:
"""
Creates an image given a prompt.
Args:
prompt: A text description of the desired image(s). The maximum length is 1000
characters for `dall-e-2` and 4000 characters for `dall-e-3`.
model: The model to use for image generation.
n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only
`n=1` is supported.
quality: The quality of the image that will be generated. `hd` creates images with finer
details and greater consistency across the image. This param is only supported
for `dall-e-3`.
response_format: The format in which the generated images are returned. Must be one of `url` or
`b64_json`. URLs are only valid for 60 minutes after the image has been
generated.
size: The size of the generated images. Must be one of `256x256`, `512x512`, or
`1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or
`1024x1792` for `dall-e-3` models.
style: The style of the generated images. Must be one of `vivid` or `natural`. Vivid
causes the model to lean towards generating hyper-real and dramatic images.
Natural causes the model to produce more natural, less hyper-real looking
images. This param is only supported for `dall-e-3`.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/images/generations",
body=await async_maybe_transform(
{
"prompt": prompt,
"model": model,
"n": n,
"quality": quality,
"response_format": response_format,
"size": size,
"style": style,
"user": user,
},
image_generate_params.ImageGenerateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ImagesResponse,
)
class ImagesWithRawResponse:
def __init__(self, images: Images) -> None:
self._images = images
self.create_variation = _legacy_response.to_raw_response_wrapper(
images.create_variation,
)
self.edit = _legacy_response.to_raw_response_wrapper(
images.edit,
)
self.generate = _legacy_response.to_raw_response_wrapper(
images.generate,
)
class AsyncImagesWithRawResponse:
def __init__(self, images: AsyncImages) -> None:
self._images = images
self.create_variation = _legacy_response.async_to_raw_response_wrapper(
images.create_variation,
)
self.edit = _legacy_response.async_to_raw_response_wrapper(
images.edit,
)
self.generate = _legacy_response.async_to_raw_response_wrapper(
images.generate,
)
class ImagesWithStreamingResponse:
def __init__(self, images: Images) -> None:
self._images = images
self.create_variation = to_streamed_response_wrapper(
images.create_variation,
)
self.edit = to_streamed_response_wrapper(
images.edit,
)
self.generate = to_streamed_response_wrapper(
images.generate,
)
class AsyncImagesWithStreamingResponse:
def __init__(self, images: AsyncImages) -> None:
self._images = images
self.create_variation = async_to_streamed_response_wrapper(
images.create_variation,
)
self.edit = async_to_streamed_response_wrapper(
images.edit,
)
self.generate = async_to_streamed_response_wrapper(
images.generate,
)

View File

@@ -0,0 +1,306 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import httpx
from .. import _legacy_response
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ..pagination import SyncPage, AsyncPage
from ..types.model import Model
from .._base_client import (
AsyncPaginator,
make_request_options,
)
from ..types.model_deleted import ModelDeleted
__all__ = ["Models", "AsyncModels"]
class Models(SyncAPIResource):
@cached_property
def with_raw_response(self) -> ModelsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return ModelsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> ModelsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return ModelsWithStreamingResponse(self)
def retrieve(
self,
model: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Model:
"""
Retrieves a model instance, providing basic information about the model such as
the owner and permissioning.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not model:
raise ValueError(f"Expected a non-empty value for `model` but received {model!r}")
return self._get(
f"/models/{model}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Model,
)
def list(
self,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> SyncPage[Model]:
"""
Lists the currently available models, and provides basic information about each
one such as the owner and availability.
"""
return self._get_api_list(
"/models",
page=SyncPage[Model],
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
model=Model,
)
def delete(
self,
model: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ModelDeleted:
"""Delete a fine-tuned model.
You must have the Owner role in your organization to
delete a model.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not model:
raise ValueError(f"Expected a non-empty value for `model` but received {model!r}")
return self._delete(
f"/models/{model}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ModelDeleted,
)
class AsyncModels(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncModelsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncModelsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncModelsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncModelsWithStreamingResponse(self)
async def retrieve(
self,
model: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Model:
"""
Retrieves a model instance, providing basic information about the model such as
the owner and permissioning.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not model:
raise ValueError(f"Expected a non-empty value for `model` but received {model!r}")
return await self._get(
f"/models/{model}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Model,
)
def list(
self,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncPaginator[Model, AsyncPage[Model]]:
"""
Lists the currently available models, and provides basic information about each
one such as the owner and availability.
"""
return self._get_api_list(
"/models",
page=AsyncPage[Model],
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
model=Model,
)
async def delete(
self,
model: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ModelDeleted:
"""Delete a fine-tuned model.
You must have the Owner role in your organization to
delete a model.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not model:
raise ValueError(f"Expected a non-empty value for `model` but received {model!r}")
return await self._delete(
f"/models/{model}",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ModelDeleted,
)
class ModelsWithRawResponse:
def __init__(self, models: Models) -> None:
self._models = models
self.retrieve = _legacy_response.to_raw_response_wrapper(
models.retrieve,
)
self.list = _legacy_response.to_raw_response_wrapper(
models.list,
)
self.delete = _legacy_response.to_raw_response_wrapper(
models.delete,
)
class AsyncModelsWithRawResponse:
def __init__(self, models: AsyncModels) -> None:
self._models = models
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
models.retrieve,
)
self.list = _legacy_response.async_to_raw_response_wrapper(
models.list,
)
self.delete = _legacy_response.async_to_raw_response_wrapper(
models.delete,
)
class ModelsWithStreamingResponse:
def __init__(self, models: Models) -> None:
self._models = models
self.retrieve = to_streamed_response_wrapper(
models.retrieve,
)
self.list = to_streamed_response_wrapper(
models.list,
)
self.delete = to_streamed_response_wrapper(
models.delete,
)
class AsyncModelsWithStreamingResponse:
def __init__(self, models: AsyncModels) -> None:
self._models = models
self.retrieve = async_to_streamed_response_wrapper(
models.retrieve,
)
self.list = async_to_streamed_response_wrapper(
models.list,
)
self.delete = async_to_streamed_response_wrapper(
models.delete,
)

View File

@@ -0,0 +1,200 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Union, Iterable
import httpx
from .. import _legacy_response
from ..types import moderation_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import (
maybe_transform,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .._base_client import make_request_options
from ..types.moderation_model import ModerationModel
from ..types.moderation_create_response import ModerationCreateResponse
from ..types.moderation_multi_modal_input_param import ModerationMultiModalInputParam
__all__ = ["Moderations", "AsyncModerations"]
class Moderations(SyncAPIResource):
@cached_property
def with_raw_response(self) -> ModerationsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return ModerationsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> ModerationsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return ModerationsWithStreamingResponse(self)
def create(
self,
*,
input: Union[str, List[str], Iterable[ModerationMultiModalInputParam]],
model: Union[str, ModerationModel] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ModerationCreateResponse:
"""Classifies if text and/or image inputs are potentially harmful.
Learn more in
the [moderation guide](https://platform.openai.com/docs/guides/moderation).
Args:
input: Input (or inputs) to classify. Can be a single string, an array of strings, or
an array of multi-modal input objects similar to other models.
model: The content moderation model you would like to use. Learn more in
[the moderation guide](https://platform.openai.com/docs/guides/moderation), and
learn about available models
[here](https://platform.openai.com/docs/models/moderation).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/moderations",
body=maybe_transform(
{
"input": input,
"model": model,
},
moderation_create_params.ModerationCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ModerationCreateResponse,
)
class AsyncModerations(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncModerationsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncModerationsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncModerationsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncModerationsWithStreamingResponse(self)
async def create(
self,
*,
input: Union[str, List[str], Iterable[ModerationMultiModalInputParam]],
model: Union[str, ModerationModel] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ModerationCreateResponse:
"""Classifies if text and/or image inputs are potentially harmful.
Learn more in
the [moderation guide](https://platform.openai.com/docs/guides/moderation).
Args:
input: Input (or inputs) to classify. Can be a single string, an array of strings, or
an array of multi-modal input objects similar to other models.
model: The content moderation model you would like to use. Learn more in
[the moderation guide](https://platform.openai.com/docs/guides/moderation), and
learn about available models
[here](https://platform.openai.com/docs/models/moderation).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/moderations",
body=await async_maybe_transform(
{
"input": input,
"model": model,
},
moderation_create_params.ModerationCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=ModerationCreateResponse,
)
class ModerationsWithRawResponse:
def __init__(self, moderations: Moderations) -> None:
self._moderations = moderations
self.create = _legacy_response.to_raw_response_wrapper(
moderations.create,
)
class AsyncModerationsWithRawResponse:
def __init__(self, moderations: AsyncModerations) -> None:
self._moderations = moderations
self.create = _legacy_response.async_to_raw_response_wrapper(
moderations.create,
)
class ModerationsWithStreamingResponse:
def __init__(self, moderations: Moderations) -> None:
self._moderations = moderations
self.create = to_streamed_response_wrapper(
moderations.create,
)
class AsyncModerationsWithStreamingResponse:
def __init__(self, moderations: AsyncModerations) -> None:
self._moderations = moderations
self.create = async_to_streamed_response_wrapper(
moderations.create,
)

View File

@@ -0,0 +1,33 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from .parts import (
Parts,
AsyncParts,
PartsWithRawResponse,
AsyncPartsWithRawResponse,
PartsWithStreamingResponse,
AsyncPartsWithStreamingResponse,
)
from .uploads import (
Uploads,
AsyncUploads,
UploadsWithRawResponse,
AsyncUploadsWithRawResponse,
UploadsWithStreamingResponse,
AsyncUploadsWithStreamingResponse,
)
__all__ = [
"Parts",
"AsyncParts",
"PartsWithRawResponse",
"AsyncPartsWithRawResponse",
"PartsWithStreamingResponse",
"AsyncPartsWithStreamingResponse",
"Uploads",
"AsyncUploads",
"UploadsWithRawResponse",
"AsyncUploadsWithRawResponse",
"UploadsWithStreamingResponse",
"AsyncUploadsWithStreamingResponse",
]

View File

@@ -0,0 +1,210 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Mapping, cast
import httpx
from ... import _legacy_response
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ..._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ..._base_client import make_request_options
from ...types.uploads import part_create_params
from ...types.uploads.upload_part import UploadPart
__all__ = ["Parts", "AsyncParts"]
class Parts(SyncAPIResource):
@cached_property
def with_raw_response(self) -> PartsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return PartsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> PartsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return PartsWithStreamingResponse(self)
def create(
self,
upload_id: str,
*,
data: FileTypes,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> UploadPart:
"""
Adds a
[Part](https://platform.openai.com/docs/api-reference/uploads/part-object) to an
[Upload](https://platform.openai.com/docs/api-reference/uploads/object) object.
A Part represents a chunk of bytes from the file you are trying to upload.
Each Part can be at most 64 MB, and you can add Parts until you hit the Upload
maximum of 8 GB.
It is possible to add multiple Parts in parallel. You can decide the intended
order of the Parts when you
[complete the Upload](https://platform.openai.com/docs/api-reference/uploads/complete).
Args:
data: The chunk of bytes for this Part.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
body = deepcopy_minimal({"data": data})
files = extract_files(cast(Mapping[str, object], body), paths=[["data"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
f"/uploads/{upload_id}/parts",
body=maybe_transform(body, part_create_params.PartCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=UploadPart,
)
class AsyncParts(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncPartsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncPartsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncPartsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncPartsWithStreamingResponse(self)
async def create(
self,
upload_id: str,
*,
data: FileTypes,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> UploadPart:
"""
Adds a
[Part](https://platform.openai.com/docs/api-reference/uploads/part-object) to an
[Upload](https://platform.openai.com/docs/api-reference/uploads/object) object.
A Part represents a chunk of bytes from the file you are trying to upload.
Each Part can be at most 64 MB, and you can add Parts until you hit the Upload
maximum of 8 GB.
It is possible to add multiple Parts in parallel. You can decide the intended
order of the Parts when you
[complete the Upload](https://platform.openai.com/docs/api-reference/uploads/complete).
Args:
data: The chunk of bytes for this Part.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
body = deepcopy_minimal({"data": data})
files = extract_files(cast(Mapping[str, object], body), paths=[["data"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
f"/uploads/{upload_id}/parts",
body=await async_maybe_transform(body, part_create_params.PartCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=UploadPart,
)
class PartsWithRawResponse:
def __init__(self, parts: Parts) -> None:
self._parts = parts
self.create = _legacy_response.to_raw_response_wrapper(
parts.create,
)
class AsyncPartsWithRawResponse:
def __init__(self, parts: AsyncParts) -> None:
self._parts = parts
self.create = _legacy_response.async_to_raw_response_wrapper(
parts.create,
)
class PartsWithStreamingResponse:
def __init__(self, parts: Parts) -> None:
self._parts = parts
self.create = to_streamed_response_wrapper(
parts.create,
)
class AsyncPartsWithStreamingResponse:
def __init__(self, parts: AsyncParts) -> None:
self._parts = parts
self.create = async_to_streamed_response_wrapper(
parts.create,
)

View File

@@ -0,0 +1,716 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import io
import os
import logging
import builtins
from typing import List, overload
from pathlib import Path
import anyio
import httpx
from ... import _legacy_response
from .parts import (
Parts,
AsyncParts,
PartsWithRawResponse,
AsyncPartsWithRawResponse,
PartsWithStreamingResponse,
AsyncPartsWithStreamingResponse,
)
from ...types import FilePurpose, upload_create_params, upload_complete_params
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ..._utils import (
maybe_transform,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ..._base_client import make_request_options
from ...types.upload import Upload
from ...types.file_purpose import FilePurpose
__all__ = ["Uploads", "AsyncUploads"]
# 64MB
DEFAULT_PART_SIZE = 64 * 1024 * 1024
log: logging.Logger = logging.getLogger(__name__)
class Uploads(SyncAPIResource):
@cached_property
def parts(self) -> Parts:
return Parts(self._client)
@cached_property
def with_raw_response(self) -> UploadsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return UploadsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> UploadsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return UploadsWithStreamingResponse(self)
@overload
def upload_file_chunked(
self,
*,
file: os.PathLike[str],
mime_type: str,
purpose: FilePurpose,
bytes: int | None = None,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits a file into multiple 64MB parts and uploads them sequentially."""
@overload
def upload_file_chunked(
self,
*,
file: bytes,
filename: str,
bytes: int,
mime_type: str,
purpose: FilePurpose,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits an in-memory file into multiple 64MB parts and uploads them sequentially."""
def upload_file_chunked(
self,
*,
file: os.PathLike[str] | bytes,
mime_type: str,
purpose: FilePurpose,
filename: str | None = None,
bytes: int | None = None,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits the given file into multiple parts and uploads them sequentially.
```py
from pathlib import Path
client.uploads.upload_file(
file=Path("my-paper.pdf"),
mime_type="pdf",
purpose="assistants",
)
```
"""
if isinstance(file, builtins.bytes):
if filename is None:
raise TypeError("The `filename` argument must be given for in-memory files")
if bytes is None:
raise TypeError("The `bytes` argument must be given for in-memory files")
else:
if not isinstance(file, Path):
file = Path(file)
if not filename:
filename = file.name
if bytes is None:
bytes = file.stat().st_size
upload = self.create(
bytes=bytes,
filename=filename,
mime_type=mime_type,
purpose=purpose,
)
part_ids: list[str] = []
if part_size is None:
part_size = DEFAULT_PART_SIZE
if isinstance(file, builtins.bytes):
buf: io.FileIO | io.BytesIO = io.BytesIO(file)
else:
buf = io.FileIO(file)
try:
while True:
data = buf.read(part_size)
if not data:
# EOF
break
part = self.parts.create(upload_id=upload.id, data=data)
log.info("Uploaded part %s for upload %s", part.id, upload.id)
part_ids.append(part.id)
except Exception:
buf.close()
raise
return self.complete(upload_id=upload.id, part_ids=part_ids, md5=md5)
def create(
self,
*,
bytes: int,
filename: str,
mime_type: str,
purpose: FilePurpose,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""
Creates an intermediate
[Upload](https://platform.openai.com/docs/api-reference/uploads/object) object
that you can add
[Parts](https://platform.openai.com/docs/api-reference/uploads/part-object) to.
Currently, an Upload can accept at most 8 GB in total and expires after an hour
after you create it.
Once you complete the Upload, we will create a
[File](https://platform.openai.com/docs/api-reference/files/object) object that
contains all the parts you uploaded. This File is usable in the rest of our
platform as a regular File object.
For certain `purpose`s, the correct `mime_type` must be specified. Please refer
to documentation for the supported MIME types for your use case:
- [Assistants](https://platform.openai.com/docs/assistants/tools/file-search/supported-files)
For guidance on the proper filename extensions for each purpose, please follow
the documentation on
[creating a File](https://platform.openai.com/docs/api-reference/files/create).
Args:
bytes: The number of bytes in the file you are uploading.
filename: The name of the file to upload.
mime_type: The MIME type of the file.
This must fall within the supported MIME types for your file purpose. See the
supported MIME types for assistants and vision.
purpose: The intended purpose of the uploaded file.
See the
[documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/uploads",
body=maybe_transform(
{
"bytes": bytes,
"filename": filename,
"mime_type": mime_type,
"purpose": purpose,
},
upload_create_params.UploadCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
def cancel(
self,
upload_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""Cancels the Upload.
No Parts may be added after an Upload is cancelled.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
return self._post(
f"/uploads/{upload_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
def complete(
self,
upload_id: str,
*,
part_ids: List[str],
md5: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""
Completes the
[Upload](https://platform.openai.com/docs/api-reference/uploads/object).
Within the returned Upload object, there is a nested
[File](https://platform.openai.com/docs/api-reference/files/object) object that
is ready to use in the rest of the platform.
You can specify the order of the Parts by passing in an ordered list of the Part
IDs.
The number of bytes uploaded upon completion must match the number of bytes
initially specified when creating the Upload object. No Parts may be added after
an Upload is completed.
Args:
part_ids: The ordered list of Part IDs.
md5: The optional md5 checksum for the file contents to verify if the bytes uploaded
matches what you expect.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
return self._post(
f"/uploads/{upload_id}/complete",
body=maybe_transform(
{
"part_ids": part_ids,
"md5": md5,
},
upload_complete_params.UploadCompleteParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
class AsyncUploads(AsyncAPIResource):
@cached_property
def parts(self) -> AsyncParts:
return AsyncParts(self._client)
@cached_property
def with_raw_response(self) -> AsyncUploadsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncUploadsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncUploadsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncUploadsWithStreamingResponse(self)
@overload
async def upload_file_chunked(
self,
*,
file: os.PathLike[str],
mime_type: str,
purpose: FilePurpose,
bytes: int | None = None,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits a file into multiple 64MB parts and uploads them sequentially."""
@overload
async def upload_file_chunked(
self,
*,
file: bytes,
filename: str,
bytes: int,
mime_type: str,
purpose: FilePurpose,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits an in-memory file into multiple 64MB parts and uploads them sequentially."""
async def upload_file_chunked(
self,
*,
file: os.PathLike[str] | bytes,
mime_type: str,
purpose: FilePurpose,
filename: str | None = None,
bytes: int | None = None,
part_size: int | None = None,
md5: str | NotGiven = NOT_GIVEN,
) -> Upload:
"""Splits the given file into multiple parts and uploads them sequentially.
```py
from pathlib import Path
client.uploads.upload_file(
file=Path("my-paper.pdf"),
mime_type="pdf",
purpose="assistants",
)
```
"""
if isinstance(file, builtins.bytes):
if filename is None:
raise TypeError("The `filename` argument must be given for in-memory files")
if bytes is None:
raise TypeError("The `bytes` argument must be given for in-memory files")
else:
if not isinstance(file, anyio.Path):
file = anyio.Path(file)
if not filename:
filename = file.name
if bytes is None:
stat = await file.stat()
bytes = stat.st_size
upload = await self.create(
bytes=bytes,
filename=filename,
mime_type=mime_type,
purpose=purpose,
)
part_ids: list[str] = []
if part_size is None:
part_size = DEFAULT_PART_SIZE
if isinstance(file, anyio.Path):
fd = await file.open("rb")
async with fd:
while True:
data = await fd.read(part_size)
if not data:
# EOF
break
part = await self.parts.create(upload_id=upload.id, data=data)
log.info("Uploaded part %s for upload %s", part.id, upload.id)
part_ids.append(part.id)
else:
buf = io.BytesIO(file)
try:
while True:
data = buf.read(part_size)
if not data:
# EOF
break
part = await self.parts.create(upload_id=upload.id, data=data)
log.info("Uploaded part %s for upload %s", part.id, upload.id)
part_ids.append(part.id)
except Exception:
buf.close()
raise
return await self.complete(upload_id=upload.id, part_ids=part_ids, md5=md5)
async def create(
self,
*,
bytes: int,
filename: str,
mime_type: str,
purpose: FilePurpose,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""
Creates an intermediate
[Upload](https://platform.openai.com/docs/api-reference/uploads/object) object
that you can add
[Parts](https://platform.openai.com/docs/api-reference/uploads/part-object) to.
Currently, an Upload can accept at most 8 GB in total and expires after an hour
after you create it.
Once you complete the Upload, we will create a
[File](https://platform.openai.com/docs/api-reference/files/object) object that
contains all the parts you uploaded. This File is usable in the rest of our
platform as a regular File object.
For certain `purpose`s, the correct `mime_type` must be specified. Please refer
to documentation for the supported MIME types for your use case:
- [Assistants](https://platform.openai.com/docs/assistants/tools/file-search/supported-files)
For guidance on the proper filename extensions for each purpose, please follow
the documentation on
[creating a File](https://platform.openai.com/docs/api-reference/files/create).
Args:
bytes: The number of bytes in the file you are uploading.
filename: The name of the file to upload.
mime_type: The MIME type of the file.
This must fall within the supported MIME types for your file purpose. See the
supported MIME types for assistants and vision.
purpose: The intended purpose of the uploaded file.
See the
[documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/uploads",
body=await async_maybe_transform(
{
"bytes": bytes,
"filename": filename,
"mime_type": mime_type,
"purpose": purpose,
},
upload_create_params.UploadCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
async def cancel(
self,
upload_id: str,
*,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""Cancels the Upload.
No Parts may be added after an Upload is cancelled.
Args:
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
return await self._post(
f"/uploads/{upload_id}/cancel",
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
async def complete(
self,
upload_id: str,
*,
part_ids: List[str],
md5: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Upload:
"""
Completes the
[Upload](https://platform.openai.com/docs/api-reference/uploads/object).
Within the returned Upload object, there is a nested
[File](https://platform.openai.com/docs/api-reference/files/object) object that
is ready to use in the rest of the platform.
You can specify the order of the Parts by passing in an ordered list of the Part
IDs.
The number of bytes uploaded upon completion must match the number of bytes
initially specified when creating the Upload object. No Parts may be added after
an Upload is completed.
Args:
part_ids: The ordered list of Part IDs.
md5: The optional md5 checksum for the file contents to verify if the bytes uploaded
matches what you expect.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not upload_id:
raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}")
return await self._post(
f"/uploads/{upload_id}/complete",
body=await async_maybe_transform(
{
"part_ids": part_ids,
"md5": md5,
},
upload_complete_params.UploadCompleteParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Upload,
)
class UploadsWithRawResponse:
def __init__(self, uploads: Uploads) -> None:
self._uploads = uploads
self.create = _legacy_response.to_raw_response_wrapper(
uploads.create,
)
self.cancel = _legacy_response.to_raw_response_wrapper(
uploads.cancel,
)
self.complete = _legacy_response.to_raw_response_wrapper(
uploads.complete,
)
@cached_property
def parts(self) -> PartsWithRawResponse:
return PartsWithRawResponse(self._uploads.parts)
class AsyncUploadsWithRawResponse:
def __init__(self, uploads: AsyncUploads) -> None:
self._uploads = uploads
self.create = _legacy_response.async_to_raw_response_wrapper(
uploads.create,
)
self.cancel = _legacy_response.async_to_raw_response_wrapper(
uploads.cancel,
)
self.complete = _legacy_response.async_to_raw_response_wrapper(
uploads.complete,
)
@cached_property
def parts(self) -> AsyncPartsWithRawResponse:
return AsyncPartsWithRawResponse(self._uploads.parts)
class UploadsWithStreamingResponse:
def __init__(self, uploads: Uploads) -> None:
self._uploads = uploads
self.create = to_streamed_response_wrapper(
uploads.create,
)
self.cancel = to_streamed_response_wrapper(
uploads.cancel,
)
self.complete = to_streamed_response_wrapper(
uploads.complete,
)
@cached_property
def parts(self) -> PartsWithStreamingResponse:
return PartsWithStreamingResponse(self._uploads.parts)
class AsyncUploadsWithStreamingResponse:
def __init__(self, uploads: AsyncUploads) -> None:
self._uploads = uploads
self.create = async_to_streamed_response_wrapper(
uploads.create,
)
self.cancel = async_to_streamed_response_wrapper(
uploads.cancel,
)
self.complete = async_to_streamed_response_wrapper(
uploads.complete,
)
@cached_property
def parts(self) -> AsyncPartsWithStreamingResponse:
return AsyncPartsWithStreamingResponse(self._uploads.parts)