
�	

�

file:///tmp/ARQUITETURA-TECNICA-full.html#vis%C3%A3o-geral
file:///tmp/ARQUITETURA-TECNICA-full.html#stack-tecnol%C3%B3gica
file:///tmp/ARQUITETURA-TECNICA-full.html#arquitetura-de-sistema
file:///tmp/ARQUITETURA-TECNICA-full.html#m%C3%B3dulos
file:///tmp/ARQUITETURA-TECNICA-full.html#modelo-de-dados
file:///tmp/ARQUITETURA-TECNICA-full.html#fluxo-principal
file:///tmp/ARQUITETURA-TECNICA-full.html#apis-externas
file:///tmp/ARQUITETURA-TECNICA-full.html#pwa--c%C3%A2mera
file:///tmp/ARQUITETURA-TECNICA-full.html#monetiza%C3%A7%C3%A3o-t%C3%A9cnica
file:///tmp/ARQUITETURA-TECNICA-full.html#performance
file:///tmp/ARQUITETURA-TECNICA-full.html#design--ux
file:///tmp/ARQUITETURA-TECNICA-full.html#roadmap
file:///tmp/ARQUITETURA-TECNICA-full.html#estrutura-de-diret%C3%B3rios


navigator.mediaDevices

┌─────────────────────────────────────────────────────┐
│																				CLIENTE	(PWA)																					│
│		Next.js	14	·	Tailwind	·	ZXing-js	·	Service	Worker		│
└──────────────────────┬──────────────────────────────┘
																							│	HTTPS
																							▼
┌─────────────────────────────────────────────────────┐
│																			API	GATEWAY																								│
│														FastAPI	·	Uvicorn	·	JWT																		│



│																																																						│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│			Auth			│	│	Scanner		│	│	Produtos		│												│
│		│		Module		│	│		Module		│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│	Análise		│	│		Score			│	│Alternativ.│												│
│		│			IA					│	│		Saúde			│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│Histórico	│	│		Perfil		│	│Gamificação│												│
│		│	Module			│	│Alimentar	│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
└───────┬──────────┬──────────────┬───────────────────┘
								│										│														│
			┌────▼───┐	┌───▼────┐		┌─────▼──────┐
			│Postgres│	│	Redis		│		│		Celery				│
			│		16				│	│			7				│		│		Workers			│
			└────────┘	└────────┘		└─────┬──────┘
																																│
																				┌───────────▼───────────┐
																				│			APIs	Externas							│
																				│	•	Open	Food	Facts					│
																				│	•	OpenAI	GPT-4o-mini		│
																				│	•	Stripe														│
																				└───────────────────────┘

POST	/auth/register								→	Cria	conta	(email	+	senha	ou	OAuth)
POST	/auth/login											→	Retorna	access_token	+	refresh_token
POST	/auth/refresh									→	Renova	access_token
POST	/auth/forgot-password	→	Envia	email	de	reset
POST	/auth/reset-password		→	Aplica	nova	senha
GET		/auth/me														→	Retorna	perfil	do	usuário	logado
DELETE	/auth/me												→	Deleta	conta	(LGPD)

POST	/scan																	→	Recebe	barcode,	orquestra	busca	+	análise
GET		/scan/{scan_id}							→	Retorna	resultado	completo	de	um	scan



GET		/products/{barcode}											→	Busca	produto	por	barcode
GET		/products/{barcode}/nutrition	→	Dados	nutricionais	detalhados
POST	/products/report														→	Usuário	reporta	dados	incorretos

POST	/analysis/ingredients			→	Analisa	lista	de	ingredientes
GET		/analysis/{analysis_id}	→	Retorna	análise	completa

SYSTEM_PROMPT	=	"""
Você	é	um	nutricionista	especialista	que	explica	ingredientes	
alimentares	de	forma	simples,	como	se	falasse	com	alguém	sem	
formação	técnica.

Para	cada	ingrediente,	forneça:
1.	Nome	popular	(se	diferente	do	técnico)
2.	O	que	é	e	para	que	serve	no	produto	(1-2	frases)
3.	Classificação:	✅	Natural	|	⚠		Atenção	|	�	Evitar
4.	Motivo	da	classificação	(1	frase)

Ao	final,	gere:
-	Score	de	saúde	(0-100)	com	justificativa
-	Top	3	ingredientes	problemáticos	(se	houver)
-	Resumo	em	1	parágrafo	para	leigo
"""

USER_PROMPT_TEMPLATE	=	"""
Produto:	{product_name}
Marca:	{brand}
Categoria:	{category}
Ingredientes:	{ingredients_text}
Tabela	nutricional	(por	100g):	{nutrition_table}
Perfil	do	usuário:	{user_profile}		#	alergias,	restrições



Analise	este	produto.
"""

{
		"ingredients":	[
				{
						"name":	"Açúcar	invertido",
						"popular_name":	"Açúcar	líquido",
						"explanation":	"É	açúcar	comum	dissolvido	e	processado	para	ficar	líquido.	Usado	para	adoçar	e	dar	textura."
						"classification":	"warning",
						"reason":	"Alto	índice	glicêmico,	contribui	para	picos	de	açúcar	no	sangue."
				}
		],
		"health_score":	35,
		"score_breakdown":	{
				"naturalness":	20,
				"nutrition":	40,
				"processing":	30,
				"additives":	50
		},
		"problematic_top3":	["Açúcar	invertido",	"Gordura	vegetal	hidrogenada",	"Corante	caramelo	IV"],
		"summary":	"Este	produto	é	ultraprocessado	com	alto	teor	de	açúcar...",
		"alerts":	[
				{"type":	"allergen",	"message":	"Contém	glúten	(incompatível	com	seu	perfil)"}
		]
}

def	calculate_health_score(product,	ai_analysis):
				score	=	100
				
				#	1.	Nutri-Score	(peso:	25%)
				nutri_penalty	=	{"a":	0,	"b":	5,	"c":	15,	"d":	25,	"e":	35}
				score	-=	nutri_penalty.get(product.nutri_score,	20)	*	0.25
				
				#	2.	NOVA	Group	-	Processamento	(peso:	25%)
				nova_penalty	=	{1:	0,	2:	10,	3:	25,	4:	40}
				score	-=	nova_penalty.get(product.nova_group,	30)	*	0.25
				
				#	3.	Ingredientes	problemáticos	(peso:	25%)
				problematic_count	=	len(ai_analysis.problematic_ingredients)
				score	-=	min(problematic_count	*	8,	40)	*	0.25
				
				#	4.	Perfil	nutricional	(peso:	25%)
				#	Penaliza	excesso	de:	sódio,	açúcar,	gordura	saturada,	gordura	trans
				#	Bonifica	presença	de:	fibra,	proteína,	vitaminas
				nutrition_score	=	calculate_nutrition_subscore(product.nutrition)
				score	-=	(100	-	nutrition_score)	*	0.25
				



				return	max(0,	min(100,	round(score)))

� � �

GET		/history																→	Lista	scans	do	usuário	(paginado)
GET		/history/stats										→	Estatísticas	gerais	(score	médio,	total	scans)
GET		/history/trends									→	Evolução	do	score	ao	longo	do	tempo
DELETE	/history/{scan_id}				→	Remove	scan	do	histórico

GET	/alternatives/{barcode}		→	Alternativas	para	um	produto

{
		"current_product":	{"name":	"Biscoito	X",	"score":	25},
		"alternatives":	[
				{
						"name":	"Biscoito	Integral	Y",
						"brand":	"Marca	Y",
						"score":	72,
						"score_diff":	"+47",
						"highlights":	["Sem	gordura	trans",	"Rico	em	fibras",	"Menos	açúcar"],
						"barcode":	"7891234567890"
				}
		]
}

GET		/profile/dietary								→	Retorna	perfil	alimentar
PUT		/profile/dietary								→	Atualiza	perfil
GET		/profile/dietary/check/{barcode}	→	Verifica	compatibilidade

{
		"allergies":	["glúten",	"lactose",	"amendoim"],
		"intolerances":	["frutose"],



		"diet":	"vegetariano",		//	null,	vegetariano,	vegano,	low-carb,	keto,	etc
		"avoid":	["corantes	artificiais",	"glutamato	monossódico"],
		"goals":	["reduzir	açúcar",	"mais	fibra"],
		"conditions":	["diabetes	tipo	2",	"hipertensão"]		//	premium
}

	

GET		/gamification/profile						→	XP,	nível,	conquistas
GET		/gamification/achievements	→	Lista	todas	as	conquistas
GET		/gamification/leaderboard		→	Ranking	semanal	(premium)

� �
� �

┌──────────────┐					┌──────────────┐					┌──────────────┐
│				users					│					│				plans					│					│dietary_profiles│
│──────────────│					│──────────────│					│──────────────│
│	id	(PK)						│────▶│	id	(PK)						│					│	id	(PK)						│
│	email								│					│	name									│					│	user_id	(FK)		│
│	password_hash│					│	price								│					│	allergies[]			│
│	name									│					│	scan_limit			│					│	diet										│
│	plan_id	(FK)	│					│	features{}			│					│	avoid[]							│
│	xp											│					└──────────────┘					│	goals[]							│
│	level								│																										│	conditions[]		│
│	streak_days		│																										└──────────────┘
│	created_at			│
└──────┬───────┘
							│	1:N
							▼
┌──────────────┐					┌──────────────┐
│				scans					│────▶│		products				│
│──────────────│					│──────────────│
│	id	(PK)						│					│	id	(PK)						│
│	user_id	(FK)	│					│	barcode	(UQ)	│
│	product_id			│					│	name									│
│	analysis_id		│					│	brand								│
│	score								│					│	category					│
│	scanned_at			│					│	ingredients		│
│	source							│					│	nutrition	{}	│
└──────────────┘					│	nutri_score		│
																					│	nova_group			│
																					│	images	{}				│
																					│	allergens[]		│
																					│	off_data	{}		│



																					│	updated_at			│
																					└──────┬───────┘
																												│	1:N
																												▼
																					┌──────────────┐					┌──────────────┐
																					│	ingredients		│					│		analyses				│
																					│──────────────│					│──────────────│
																					│	id	(PK)						│					│	id	(PK)						│
																					│	product_id			│					│	product_id			│
																					│	name									│					│	profile_hash	│
																					│	popular_name	│					│	ingredients[]│
																					│	classification│				│	score								│
																					│	explanation		│					│	breakdown	{}	│
																					│	risk_level			│					│	summary						│
																					└──────────────┘					│	alerts[]					│
																																										│	model_version│
																																										│	created_at			│
																																										└──────────────┘

┌──────────────┐					┌──────────────┐
│	alternatives	│					│	achievements	│
│──────────────│					│──────────────│
│	id	(PK)						│					│	id	(PK)						│
│	product_id			│					│	user_id	(FK)	│
│	alt_product_id│				│	badge_type			│
│	score_diff			│					│	unlocked_at		│
│	highlights[]	│					└──────────────┘
└──────────────┘

┌──────────────┐
│	scan_credits	│
│──────────────│
│	id	(PK)						│
│	user_id	(FK)	│
│	date									│
│	used									│
│	limit								│
└──────────────┘

--	Usuários
CREATE	TABLE	users	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				email	VARCHAR(255)	UNIQUE	NOT	NULL,
				password_hash	VARCHAR(255)	NOT	NULL,
				name	VARCHAR(100)	NOT	NULL,
				plan_id	INTEGER	REFERENCES	plans(id)	DEFAULT	1,
				xp	INTEGER	DEFAULT	0,
				level	INTEGER	DEFAULT	1,
				streak_days	INTEGER	DEFAULT	0,
				last_scan_date	DATE,
				stripe_customer_id	VARCHAR(255),
				created_at	TIMESTAMPTZ	DEFAULT	NOW(),
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

--	Planos
CREATE	TABLE	plans	(
				id	SERIAL	PRIMARY	KEY,
				name	VARCHAR(50)	NOT	NULL,										--	'free',	'premium'



				price_cents	INTEGER	NOT	NULL,								--	0,	1490	(R$14.90)
				scan_limit_daily	INTEGER	NOT	NULL,			--	3,	-1	(unlimited)
				features	JSONB	DEFAULT	'{}'										--	{"export":	true,	"history_full":	true}
);

--	Produtos
CREATE	TABLE	products	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				barcode	VARCHAR(20)	UNIQUE	NOT	NULL,
				name	VARCHAR(500),
				brand	VARCHAR(200),
				category	VARCHAR(200),
				ingredients_text	TEXT,
				nutrition	JSONB,												--	{"energy_kcal":	250,	"fat":	12,	...}
				nutri_score	CHAR(1),								--	A-E
				nova_group	SMALLINT,								--	1-4
				images	JSONB,															--	{"front":	"url",	"ingredients":	"url"}
				allergens	TEXT[],
				off_data	JSONB,													--	Raw	Open	Food	Facts	response
				scan_count	INTEGER	DEFAULT	0,
				created_at	TIMESTAMPTZ	DEFAULT	NOW(),
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_products_barcode	ON	products(barcode);
CREATE	INDEX	idx_products_category	ON	products(category);

--	Scans
CREATE	TABLE	scans	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				user_id	UUID	REFERENCES	users(id)	ON	DELETE	CASCADE,
				product_id	UUID	REFERENCES	products(id),
				analysis_id	UUID	REFERENCES	analyses(id),
				health_score	SMALLINT,
				scanned_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_scans_user_date	ON	scans(user_id,	scanned_at	DESC);

--	Análises	IA
CREATE	TABLE	analyses	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				product_id	UUID	REFERENCES	products(id),
				profile_hash	VARCHAR(64),				--	SHA-256	do	perfil	alimentar	(para	cache)
				ingredients_analysis	JSONB,		--	Array	de	análises	por	ingrediente
				health_score	SMALLINT,
				score_breakdown	JSONB,							--	{"naturalness":	20,	"nutrition":	40,	...}
				problematic_top3	TEXT[],
				summary	TEXT,
				alerts	JSONB,
				model_version	VARCHAR(50),			--	"gpt-4o-mini-2024-07-18"
				tokens_used	INTEGER,
				created_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_analyses_product_profile	ON	analyses(product_id,	profile_hash);

--	Perfis	Alimentares
CREATE	TABLE	dietary_profiles	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				user_id	UUID	UNIQUE	REFERENCES	users(id)	ON	DELETE	CASCADE,
				allergies	TEXT[]	DEFAULT	'{}',
				intolerances	TEXT[]	DEFAULT	'{}',



				diet	VARCHAR(50),
				avoid	TEXT[]	DEFAULT	'{}',
				goals	TEXT[]	DEFAULT	'{}',
				conditions	TEXT[]	DEFAULT	'{}',
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

Usuário	abre	app	(PWA)
								│
								▼
┌─	Tela	de	Scan	──────────────────────────────────────────┐
│		navigator.mediaDevices.getUserMedia({video:	{										│
│				facingMode:	"environment"																													│
│		}})																																																				│
│		ZXing-js	detecta	barcode	em	tempo	real																	│
└────────────────────┬────────────────────────────────────┘
																					│	barcode	detectado	(ex:	"7891000100103")
																					▼
										POST	/api/v1/scan
										{	"barcode":	"7891000100103"	}
																					│
																					▼
┌─	Backend	──────────────────────────────────────────────┐
│																																																									│
│		1.	RATE	LIMIT	CHECK																																				│
│					Redis:	INCR	user:{id}:scans:{date}																	│
│					Se	>=	limite	→	402	(upgrade	para	premium)											│
│																																																									│
│		2.	BUSCA	PRODUTO	(3	camadas)																										│
│					a)	Redis	GET	product:{barcode}																					│
│								→	HIT?	Retorna	cached	(<	5ms)																			│
│					b)	PostgreSQL	SELECT	*	FROM	products	WHERE	barcode=	│
│								→	HIT?	Retorna	+	atualiza	Redis																		│
│					c)	Open	Food	Facts	API	GET	/api/v2/product/{barcode}│
│								→	HIT?	Persiste	no	DB	+	Redis																				│
│								→	MISS?	Retorna	"Produto	não	encontrado"									│
│																																																									│
│		3.	BUSCA	ANÁLISE	(cache	por	produto	+	perfil)									│
│					profile_hash	=	SHA256(user.dietary_profile)									│
│					SELECT	*	FROM	analyses																														│
│							WHERE	product_id	=	X	AND	profile_hash	=	Y									│
│					→	HIT?	Retorna	cached																															│
│					→	MISS?	Chama	GPT-4o-mini																										│
│																																																									│
│		4.	ANÁLISE	IA	(se	cache	miss)																									│
│					OpenAI	Chat	Completion:																													│
│							model:	"gpt-4o-mini"																														│
│							response_format:	{	type:	"json_object"	}										│
│							messages:	[system_prompt,	user_prompt]													│
│					Parse	JSON	→	Persiste	em	analyses																			│
│																																																									│
│		5.	CALCULA	SCORE	(se	não	veio	da	análise)													│
│					Combina:	Nutri-Score	+	NOVA	+	IA	+	Nutrição								│
│																																																									│
│		6.	BUSCA	ALTERNATIVAS																																		│
│					SELECT	FROM	products	WHERE	category	=	X													│
│							AND	health_score	>	current_score																		│
│					ORDER	BY	health_score	DESC,	scan_count	DESC									│



│					LIMIT	5																																													│
│																																																									│
│		7.	REGISTRA	SCAN																																							│
│					INSERT	INTO	scans	(...)																													│
│					UPDATE	users	SET	xp	=	xp	+	10																						│
│					Verifica	achievements																															│
│																																																									│
│		8.	RETORNA	RESPONSE																																				│
└─────────────────────┬──────────────────────────────────┘
																						│
																						▼
┌─	Frontend	─────────────────────────────────────────────┐
│																																																									│
│		┌─	Resultado	────────────────────────────────────┐				│
│		│																																																	│				│
│		│			Chocolate	ao	Leite	XYZ																					│				│
│		│		Marca	ABC																																						│				│
│		│																																																	│				│
│		│		┌────────────────┐																												│				│
│		│		│				SCORE:	32			│			Evitar																	│				│
│		│		│			████░░░░░░			│																												│				│
│		│		└────────────────┘																												│				│
│		│																																																	│				│
│		│		⚠		ALERTAS																																				│				│
│		│		•	Contém	GLÚTEN	(incompatível	com	seu	perfil)	│				│
│		│		•	Alto	teor	de	açúcar	(52g/100g)														│				│
│		│																																																	│				│
│		│		�	INGREDIENTES																															│				│
│		│		•	Açúcar	←		Primeiro	ingrediente	=	base				│				│
│		│		•	Gordura	vegetal	hidrogenada	←		Trans						│				│
│		│		•	Cacau	←	✅	Natural																										│				│
│		│		•	Lecitina	de	soja	←	⚠		Emulsificante								│				│
│		│		[ver	todos	→]																																		│				│
│		│																																																	│				│
│		│			ALTERNATIVAS	MAIS	SAUDÁVEIS																│				│
│		│		•	Chocolate	70%	Marca	Y	—	Score:	68	(+36)					│				│
│		│		•	Chocolate	Orgânico	Z	—	Score:	74	(+42)						│				│
│		│																																																	│				│
│		└─────────────────────────────────────────────────┘				│
└─────────────────────────────────────────────────────────┘



✅ ✅

https://world.openfoodfacts.org/api/v2/product/{barcode}.json

Aletheia/1.0	(contato@aletheia.app)

POST	https://api.openai.com/v1/chat/completions

gpt-4o-mini

invoice.paid customer.subscription.updated customer.subscription.deleted

POST	https://vision.googleapis.com/v1/images:annotate



//	next.config.js
const	withPWA	=	require('next-pwa')({
		dest:	'public',
		register:	true,
		skipWaiting:	true,
		runtimeCaching:	[
				{
						urlPattern:	/^https:\/\/api\.aletheia\.app\/api\/v1\/products\/.*/,
						handler:	'StaleWhileRevalidate',
						options:	{
								cacheName:	'product-cache',
								expiration:	{	maxEntries:	200,	maxAgeSeconds:	86400	}
						}
				}
		]
});

//	hooks/useBarcodeScan.ts
import	{	BrowserMultiFormatReader	}	from	'@zxing/library';

export	function	useBarcodeScan()	{
		const	videoRef	=	useRef<HTMLVideoElement>(null);
		const	readerRef	=	useRef(new	BrowserMultiFormatReader());

		const	startScan	=	async	()	=>	{
				const	stream	=	await	navigator.mediaDevices.getUserMedia({
						video:	{
								facingMode:	'environment',		//	câmera	traseira
								width:	{	ideal:	1280	},
								height:	{	ideal:	720	},
						}
				});
				
				videoRef.current!.srcObject	=	stream;
				
				readerRef.current.decodeFromVideoDevice(
						undefined,		//	usa	device	padrão
						videoRef.current!,
						(result,	error)	=>	{
								if	(result)	{
										//	Vibra	para	feedback
										navigator.vibrate?.(200);
										//	Envia	barcode	para	API
										onBarcodeDetected(result.getText());
								}
						}
				);
		};

		return	{	videoRef,	startScan,	stopScan	};
}

{



		"name":	"Aletheia	-	Scanner	de	Rótulos",
		"short_name":	"Aletheia",
		"description":	"Descubra	a	verdade	sobre	o	que	você	come",
		"start_url":	"/",
		"display":	"standalone",
		"orientation":	"portrait",
		"theme_color":	"#16A34A",
		"background_color":	"#FFFFFF",
		"icons":	[
				{	"src":	"/icons/icon-192.png",	"sizes":	"192x192",	"type":	"image/png"	},
				{	"src":	"/icons/icon-512.png",	"sizes":	"512x512",	"type":	"image/png"	}
		]
}

❌ ✅

❌ ✅

❌ ✅

Usuário	clica	"Upgrade	Premium"
								│
								▼
POST	/billing/checkout-session
		→	Stripe	Checkout	Session	(mode:	subscription)
		→	Redirect	para	Stripe	hosted	page
								│
								▼
Stripe	processa	pagamento
								│
								▼
Webhook:	invoice.paid
		→	Backend	atualiza	user.plan_id	=	2
		→	Redis:	SET	user:{id}:plan	premium
								│
								▼
Usuário	retorna	ao	app	→	plano	ativo



async	def	check_scan_credits(user_id:	str)	->	bool:
				today	=	date.today().isoformat()
				key	=	f"credits:{user_id}:{today}"
				
				#	Usuário	premium	→	sempre	permitido
				if	await	is_premium(user_id):
								return	True
				
				used	=	await	redis.get(key)
				if	used	and	int(used)	>=	DAILY_FREE_LIMIT:		#	3
								return	False
				
				await	redis.incr(key)
				await	redis.expire(key,	86400)		#	expira	em	24h
				return	True

┌─────────────────────────────────────────────┐
│											Cache	Architecture																	│
│																																														│
│		Client	(React	Query)																								│
│				└─	staleTime:	5min																							│
│				└─	Produtos	escaneados	ficam	em	memória			│
│																																														│
│		Service	Worker	(Workbox)																				│
│				└─	StaleWhileRevalidate	para	/products				│
│				└─	CacheFirst	para	imagens	estáticas						│
│																																														│
│		Redis	(Server)																														│
│				└─	product:{barcode}	→	TTL	24h											│
│				└─	analysis:{product_id}:{hash}	→	TTL	7d	│
│				└─	user:{id}:credits:{date}	→	TTL	24h			│
│																																														│
│		PostgreSQL																																		│
│				└─	Source	of	truth,	updated	via	cron						│
│				└─	Produtos	atualizados	a	cada	30	dias			│
└─────────────────────────────────────────────┘



#16A34A #FFFFFF

#6B7280 #DCFCE7

#EF4444 � #F97316 � #EAB308 � #22C55E

rounded-xl

1.	SPLASH	/	ONBOARDING
			-	Logo	Aletheia	(olho	grego	animado)
			-	"Descubra	a	verdade	sobre	o	que	você	come"
			-	3	slides:	Scan	→	Entenda	→	Escolha	melhor
			-	CTA:	"Começar"	→	setup	perfil	alimentar

2.	HOME
			-	Header:	logo	+	streak	�	+	XP	bar
			-	Botão	central	grande:	"		Escanear"
			-	Últimos	scans	(horizontal	scroll)
			-	Score	médio	da	semana	(mini	gauge)
			-	Tip	do	dia	(IA)

3.	SCANNER
			-	Câmera	fullscreen	com	overlay
			-	Guia	visual:	"Aponte	para	o	código	de	barras"
			-	Auto-detect	+	vibração
			-	Loading:	animação	do	olho	"analisando"

4.	RESULTADO
			-	Score	gauge	animado	(destaque	principal)
			-	Alertas	personalizados	(cards	vermelhos/amarelos)



			-	Lista	de	ingredientes	(expandível,	com	ícones)
			-	Alternativas	(cards	horizontais)
			-	Botões:	Salvar	|	Compartilhar	|	Escanear	outro

5.	HISTÓRICO
			-	Timeline	vertical	com	mini	scores
			-	Filtros:	período,	categoria,	score
			-	Gráfico	de	tendência	(line	chart)

6.	PERFIL
			-	Dados	pessoais
			-	Perfil	alimentar	(alergias,	dieta,	goals)
			-	Plano	(free/premium)
			-	Gamificação	(nível,	badges,	streak)
			-	Configurações



aletheia/
├──	backend/
│			├──	app/
│			│			├──	__init__.py
│			│			├──	main.py																	#	FastAPI	app	factory
│			│			├──	config.py															#	Settings	(pydantic-settings)
│			│			├──	database.py													#	SQLAlchemy	async	engine
│			│			├──	dependencies.py									#	Shared	deps	(get_db,	get_current_user)
│			│			├──	models/																	#	SQLAlchemy	models
│			│			│			├──	user.py
│			│			│			├──	product.py
│			│			│			├──	scan.py
│			│			│			├──	analysis.py
│			│			│			├──	dietary_profile.py
│			│			│			└──	plan.py
│			│			├──	schemas/																#	Pydantic	schemas
│			│			│			├──	user.py
│			│			│			├──	product.py
│			│			│			├──	scan.py
│			│			│			└──	analysis.py
│			│			├──	routers/																#	API	routes
│			│			│			├──	auth.py
│			│			│			├──	scan.py
│			│			│			├──	products.py
│			│			│			├──	analysis.py
│			│			│			├──	history.py
│			│			│			├──	alternatives.py
│			│			│			├──	profile.py
│			│			│			├──	gamification.py
│			│			│			└──	billing.py
│			│			├──	services/															#	Business	logic
│			│			│			├──	auth_service.py
│			│			│			├──	scan_service.py
│			│			│			├──	product_service.py
│			│			│			├──	ai_service.py
│			│			│			├──	score_service.py



│			│			│			├──	alternatives_service.py
│			│			│			├──	credits_service.py
│			│			│			└──	gamification_service.py
│			│			├──	integrations/											#	External	APIs
│			│			│			├──	open_food_facts.py
│			│			│			├──	openai_client.py
│			│			│			└──	stripe_client.py
│			│			└──	utils/
│			│							├──	cache.py
│			│							├──	security.py
│			│							└──	prompts.py
│			├──	alembic/																				#	Migrations
│			├──	tests/
│			├──	Dockerfile
│			├──	requirements.txt
│			└──	pyproject.toml
│
├──	frontend/
│			├──	src/
│			│			├──	app/																				#	Next.js	App	Router
│			│			│			├──	layout.tsx
│			│			│			├──	page.tsx												#	Home
│			│			│			├──	scan/page.tsx							#	Scanner
│			│			│			├──	result/[id]/page.tsx
│			│			│			├──	history/page.tsx
│			│			│			├──	profile/page.tsx
│			│			│			└──	premium/page.tsx
│			│			├──	components/
│			│			│			├──	ui/																	#	Design	system
│			│			│			├──	scanner/
│			│			│			│			├──	CameraView.tsx
│			│			│			│			└──	BarcodeOverlay.tsx
│			│			│			├──	result/
│			│			│			│			├──	ScoreGauge.tsx
│			│			│			│			├──	IngredientList.tsx
│			│			│			│			├──	AlertCards.tsx
│			│			│			│			└──	AlternativeCards.tsx
│			│			│			└──	gamification/
│			│			│							├──	XPBar.tsx
│			│			│							└──	BadgeGrid.tsx
│			│			├──	hooks/
│			│			│			├──	useBarcodeScan.ts
│			│			│			├──	useAuth.ts
│			│			│			└──	useScan.ts
│			│			├──	lib/
│			│			│			├──	api.ts														#	Axios	instance
│			│			│			└──	utils.ts
│			│			└──	stores/
│			│							├──	authStore.ts								#	Zustand
│			│							└──	scanStore.ts
│			├──	public/
│			│			├──	manifest.json
│			│			├──	sw.js
│			│			└──	icons/
│			├──	next.config.js
│			├──	tailwind.config.ts
│			└──	package.json
│
├──	docs/
│			├──	ARQUITETURA-TECNICA.md						#	Este	arquivo
│			├──	API.md																						#	Documentação	da	API
│			└──	DEPLOY.md																			#	Guia	de	deploy
│



├──	docker-compose.yml														#	PostgreSQL	+	Redis	+	Backend
├──	.env.example
└──	README.md


	


