oALETHEIA ARQUITETURA TECNICA

M@ ALETHEIA — Arquitetura Técnica

Aletheia (&A\Bela) — “verdade” em grego. Scanner de rétulos alimentares com IA que revela a verdade sobre o
que vocé come.

{ indice

RN

Visao Geral

Stack Tecnolégica
Arquitetura de Sistema

Modulos

Modelo de Dados
Fluxo Principal
APIs Externas

PWA & Camera

© © N 2o a0 M 0D

Monetizacao Técnica

. Performance

o

1. Design & UX
2. Roadmap

I3. Estrutura de Diretérios

Visao Geral

O usuario aponta a camera do celular para o codigo de barras de um alimento. Em menos de 5 segundos, recebe:

e Explicacao simples de cada ingrediente (“como se tivesse 10 anos")

e Score de saude de 0 a 100 (com breakdown visual)

Alertas sobre ingredientes problematicos (corantes, conservantes, excesso de sodio)

Alternativas mais saudaveis disponiveis na mesma categoria

Compatibilidade com seu perfil alimentar (alergias, dietas, restricoes)

I Stack Tecnhologica

Backend

Async nativo, tipagem forte, docs
Framework FastAPI (Python 3.12) -
automaticas

ORM SQLAIchemy 2.0 + Alembic Migrations versionadas, async support

file:///tmp/ARQUITETURA-TECNICA-full.html#vis%C3%A3o-geral
file:///tmp/ARQUITETURA-TECNICA-full.html#stack-tecnol%C3%B3gica
file:///tmp/ARQUITETURA-TECNICA-full.html#arquitetura-de-sistema
file:///tmp/ARQUITETURA-TECNICA-full.html#m%C3%B3dulos
file:///tmp/ARQUITETURA-TECNICA-full.html#modelo-de-dados
file:///tmp/ARQUITETURA-TECNICA-full.html#fluxo-principal
file:///tmp/ARQUITETURA-TECNICA-full.html#apis-externas
file:///tmp/ARQUITETURA-TECNICA-full.html#pwa--c%C3%A2mera
file:///tmp/ARQUITETURA-TECNICA-full.html#monetiza%C3%A7%C3%A3o-t%C3%A9cnica
file:///tmp/ARQUITETURA-TECNICA-full.html#performance
file:///tmp/ARQUITETURA-TECNICA-full.html#design--ux
file:///tmp/ARQUITETURA-TECNICA-full.html#roadmap
file:///tmp/ARQUITETURA-TECNICA-full.html#estrutura-de-diret%C3%B3rios

Banco principal

Cache

Task queue
Auth

Servidor

Frontend

Componente

Framework

Ul

Estado

Camera/Barcode

HTTP

PWA

Animacoes

Infra

PostgreSQL 16

Redis 7

Celery + Redis broker
JWT (access + refresh tokens)

Uvicorn + Gunicorn

Tecnologia

Next.js 14 (App Router)
Tailwind CSS + Radix Ul
Zustand

navigator.mediaDevices + ZXing-js

Axios + React Query (TanStack)

next-pwa (Workbox)

Framer Motion

JSONB para dados flexiveis, full-text
search

Cache de produtos, rate limiting,

sessoes
Analises IA em background
Stateless, rotagao de tokens

Workers async para alta concorréncia

Justificativa

SSR, RSC, PWA-ready

Design system consistente, acessivel
Leve, simples, sem boilerplate

Scan direto no browser, sem SDK nativo

Cache client-side, retry, optimistic
updates

Offline support, install prompt

Score gauge, transicoes suaves

Componente Tecnologia

Deploy backend

Deploy frontend

Cl/cD

Monitoramento

Logs

Storage

Railway / Fly.io (ou VPS com Docker)
Vercel

GitHub Actions

Sentry (erros) + Uptime Kuma (status)
Estruturados com structlog - stdout

S3-compatible (imagens de produtos)

Arquitetura de Sistema

CLIENTE (PWA)

Next.js 14 -

Tailwind - ZXing-js - Service Worker

| HTTPS|

API GATEWAY

FastAPI - Uvicorn - IJWT

Auth

Produtos

Module

Module

Andlise

|Alternativ.

IA

| Module

|Histérico

|Gamificacéo|

| Module

| Module

[M 1

v

|Postgres|

Celery

| 16 |

Workers

APIs Externas

e Open Food Facts
e OpenAI GPT-40-mini
e Stripe

Modulos

1. Auth Module

Responsabilidade: Registro, login, gerenciamento de sessao.

POST /auth/register - Cria conta (email + senha ou OAuth)

POST /auth/login - Retorna access token + refresh token|

POST /auth/refresh - Renova access_token

POST /auth/forgot-password - Envia email de reset

POST /auth/reset-password Aplica nova senha

GET /auth/me Retorna perfil do usudrio logado|
DELETE /auth/me Deleta conta (LGPD)

e Senhas: bcrypt (cost factor 12)
e Tokens: JWT RS256, access_token (15min), refresh_token (30 dias)

°

OAuth: Google e Apple Sign-In (futuro)

°

Rate limit: 5 tentativas de login por minuto por IP

2. Scanner Module

Responsabilidade: Decodificacao de barcode e orquestracao do fluxo de scan.

POST /scan - Recebe barcode, orquestra busca + andlise

GET /scan/{scan_id} - Retorna resultado completo de um scan

Fluxo interno: 1. Recebe barcode (EAN-13/UPC-A) do frontend 2. Verifica rate limit do usuario (créditos) 3. Busca
produto no cache Redis - DB local = Open Food Facts 4. Se produto novo, persiste no DB 5. Dispara analise IA
(sync se cache hit, async se primeira vez) 6. Retorna resultado consolidado

Barcode no frontend: - ZXing-js para decodificacao client-side - Fallback: envio de imagem para Google Cloud
Vision API (barcode detection) - Suporte: EAN-13, EAN-8, UPC-A, UPC-E

3. Produtos Module

Responsabilidade: CRUD de produtos, cache e sincronizagao com Open Food Facts.

GET /products/{barcode} - Busca produto por barcode

GET /products/{barcode}/nutrition - Dados nutricionais detalhados

POST /products/report - Usudrio reporta dados incorretos

Estratégia de cache (3 camadas):

Camada TTL Detalhes

Redis 24h Hot cache, produtos escaneados recentemente
PostgreSQL 30 dias Cache persistente, atualizado via cron

Open Food Facts Sob demanda Source of truth, fallback

Dados armazenados do produto: - Nome, marca, categoria - Lista de ingredientes (texto original) - Tabela
nutricional (por 100g e por porgao) - Nutri-Score (A-E) quando disponivel - NOVA group (1-4, grau de
processamento) - Imagens (frente, ingredientes, nutricional) - Alérgenos declarados

4. Analise IA Module

Responsabilidade: Andlise inteligente de ingredientes via GPT-40-mini.

POST /analysis/ingredients - Analisa lista de ingredientes

GET /analysis/{analysis id} - Retorna andlise completa

Prompt Engineering:

SYSTEM PROMPT = """
Vocé é um nutricionista especialista que explica ingredientes

alimentares de forma simples, como se falasse com alguém sem

formacdo técnica.

Para cada ingrediente, forneca:

1. Nome popular (se diferente do técnico)

2. 0 que é e para que serve no produto (1-2 frases)

3. Classificacgdo: Natural | a Atencdo | [J Evitar]

4. Motivo da classificacdo (1 frase)

Ao final, gere:

- Score de salde (0-100) com justificativa

- Top 3 ingredientes problematicos (se houver)

- Resumo em 1 paragrafo para leigo

USER PROMPT TEMPLATE = """
Produto: {product name}
Marca: {brand}

Categoria: {category}

Ingredientes: {ingredients text}

Tabela nutricional (por 100g): {nutrition table}

Perfil do usudrio: {user profile} # alergias, restrigdes

Analise este produto.

Otimizacgdes: - Cache de andlises por hash(ingredientes + perfil_usuario) - GPT-40-mini para custo baixo (~$0.15/1M
input tokens) - Structured output (JSON mode) para parsing confiavel - Timeout: 10s, retry com exponential backoff
- Fallback: analise baseada em regras se IA falhar

Response format (JSON):

"name": "AcUcar invertido",

"popular name": "AcglUcar liquido",

"explanation": "E aglcar comum dissolvido e processado para ficar liquido. Usado para adocar e dar textura.

"classification": "warning",

"reason": "Alto indice glicémico, contribui para picos de agucar no sangue."

"health score": 35,
"score breakdown": {

"naturalness": 20,

"nutrition": 40,

"processing": 30,
"additives": 50

"problematic top3": ["Aclcar invertido", "Gordura vegetal hidrogenada", "Corante caramelo IV"],

"summary": "Este produto é ultraprocessado com alto teor de acglcar...",

{"type": "allergen", "message": "Contém glldten (incompativel com seu perfil)"}

5. Score de Saude Module
Responsabilidade: Calculo do score 0-100, combinando dados nutricionais + analise IA.

Algoritmo de Score:

def calculate health score(product, ai analysis):

.

1. Nutri-Score (peso: 25%)
nutri penalty = {"a": 0, "b": 5, "c": 15, "d": 25, "e"
score -= nutri penalty.get(product.nutri score, 20)

2. NOVA Group - Processamento (peso: 25%)
nova penalty = {1: 0, 2: 10, 3: 25, 4: 40}
score -= nova penalty.get(product.nova group, 30) * 0.25

3. Ingredientes problemdticos (peso: 25%)

problematic count = len(ai analysis.problematic ingredients)

score -= min(problematic count * 8, 40) * 0.25

4. Perfil nutricional (peso: 25%)

Penaliza excesso de: sédio, aglcar, gordura saturada, gordura trans

Bonifica presenca de: fibra, proteina, vitaminas

nutrition score = calculate nutrition subscore(product.nutrition)

score -= (100 - nutrition score) * 0.25

return max(0, min(100, round(score)))

Visualizagdo: - Gauge circular animado (0-100) - Cores: 0-30 | @ 31-50 | @ 51-70 | © 71-100 - Breakdown em 4
categorias com barras horizontais

6. Histérico Module

Responsabilidade: Timeline de scans do usuario, estatisticas e tendéncias.

GET /history - Lista scans do usudrio (paginado)

GET /history/stats - Estatisticas gerais (score médio, total scans)

GET /history/trends - Evolugdo do score ao longo do tempo|

DELETE /history/{scan id} - Remove scan do histérico

Funcionalidades: - Filtro por periodo, score range, categoria - Score médio dos ultimos 7/30/90 dias - Grafico de
tendéncia (melhoria ao longo do tempo) - “Seus piores habitos” (categorias com menor score médio) - Export
CSV/PDF (premium)

7. Alternativas Module

Responsabilidade: Sugerir produtos mais saudaveis na mesma categoria.

GET /alternatives/{barcode} - Alternativas para um produto

Logica: 1. Identifica categoria do produto (ex: "biscoito recheado”) 2. Busca produtos da mesma categoria no DB
com score > produto atual 3. Ordena por: score DESC, popularidade (n°® de scans) DESC 4. Retorna top 5 alternativas
com comparativo

Response:

"current product": {"name": "Biscoito X", "score": 25},

"alternatives": [

"name": "Biscoito Integral Y",

"brand": "Marca Y",

"score": 72,

"score diff": "+47"

"highlights": ["Sem gordura trans", "Rico em fibras", "Menos agucar"]
"barcode": "7891234567890"

8. Perfil Alimentar Module

Responsabilidade: Preferéncias, alergias e restricées do usuario.

GET /profile/dietary - Retorna perfil alimentar]

PUT /profile/dietary - Atualiza perfil

GET /profile/dietary/check/{barcode} - Verifica compatibilidade

Dados do perfil:

"allergies": ["glaten", "lactose", "amendoim"]

"intolerances": ["frutose"],

"diet":

"avoid":

// null,
["corantes artificiais",

"vegetariano", vegetariano, vegano, low-carb, keto, etc

"glutamato monossédico"],

"goals": ["reduzir agucar", "mais fibra"],

"conditions": ["diabetes tipo 2", "hipertens&o"l // premium

Impacto no fluxo: - Analise IA recebe perfil como contexto - Alertas personalizados ("A Contém gluten — vocé é

celiaco”) - Score ajustado por relevancia pessoal - Alternativas filtradas por compatibilidade

9. Gamificacao Module

Responsabilidade: Engajamento via conquistas, streaks e niveis.

GET /gamification/profile - XP, nivel,

GET /gamification/achievements - Lista todas as conquistas|

conquistas

GET /gamification/leaderboard - Ranking semanal (premium)

Sistema de XP: | Acdo | XP | |—|—| | Scan de produto | +10 | | Primeiro scan do dia | +20 (bonus streak) | | Escolher
alternativa saudavel | +30 | | Completar perfil alimentar | +50 | | Streak de 7 dias | +100 | | Compartilhar resultado |
+15 |

- §¢ Expert (100 scans) - Escolha Saudavel (5
- il Analista (score médio > 70 no més)

Conquistas (badges): - Primeiro Scan - Q Detetive (10 scans)

alternativas escolhidas) - Streak Master (30 dias seguidos)

Modelo de Dados

Diagrama ER Simplificado

id (PK) i id (PK)

email

user_id (FK)

password hash

allergies|[]

name scan limit

diet

plan_id (FK) features{}

avoid[]

Xp

goals[]

level

conditions|[]

streak days

products

id (PK) id (PK)

user _id (FK)

barcode (UQ)

product id name

analysis id brand

scanned at

ingredients

source

nutrition {}

nutrl score

nova_group

images {}

allergens|[]
off data {}

T
|
|
|
|
|
|
score | category
|
|
|
|
|
|
|

| updated at

ingredients analyses

id (PK) id (PK)

product id product id

name profile hash

popular name ingredients[]

explanation breakdown {}

summary

1
\
\
\
\
\
\

classification|
\
\

risk level
N

alerts|[]

model version

created at
L 1

I 1
\ \
\ \
\ \
\ \
\ \
\ \
| score |
\ \
\ \
\ \
\ \
\ \

1 \
alternatives | achievements |

|
id (PK) id (PK) |
user_id (FK) |
|
|

|
|
|
alt product id| badge type
|
|

product_id

score diff
highlights[]

unlocked at
L

1
]
| limit

e

DDL Principais Tabelas

-- Usuarios|

CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
password hash VARCHAR(255) NOT NULL,
name VARCHAR(100) NOT NULL,
plan id INTEGER REFERENCES plans(id) DEFAULT 1,
xp INTEGER DEFAULT 0O,
level INTEGER DEFAULT 1,
streak days INTEGER DEFAULT 0,
last scan date DATE,
stripe customer id VARCHAR(255),
created at TIMESTAMPTZ DEFAULT NOW(),
updated at TIMESTAMPTZ DEFAULT NOW()

CREATE TABLE plans (
id SERIAL PRIMARY KEY,
name VARCHAR(50) NOT NULL, 'free', 'premium'

price cents INTEGER NOT NULL, -- 0, 1490 (R$14.90)
scan limit daily INTEGER NOT NULL,
features JSONB DEFAULT '{}' -- {"export": true, "history full": true}

ingredients text TEXT,
nutrition JSONB, -- {"energy kcal": 250, "fat": 12,

nutri score CHAR(1), -- A-E
nova _group SMALLINT, .- 1-4

images JSONB, -- {"front": "url", "ingredients": "url"}
allergens TEXT[],

off data JSONB, -- Raw Open Food Facts response

scan count INTEGER DEFAULT 0,

created at TIMESTAMPTZ DEFAULT NOW(),

updated at TIMESTAMPTZ DEFAULT NOW

r (barcode) ;

[S)
o)
m
>
=
m
-
=
S
m
>
I
o
<

o
=
o
o
ey
o
-+
("2}
o
Q
-+
D

«Q
o
]

<
o
=

o
S
o
o
c
o
-+
("2}

(category);

Ol S) —
SlE] H
m m
> | >
Slo et
m|o m
=
— ln —
> =
(e} o
— m
m >
n - e
o o
Q x
=] Ll
m k=]
=
o
o
c
o
A
()
|l
o
Q
o
o
o
(0]
o
=
©
3 =
o =
o
c
o
pie
()

(
id UUID PRIMARY KEY DEFAULT gen random uuid(),
user id UUID REFERENCES users(id) ON DELETE CASCADE,
product id UUID REFERENCES products(id),
analysis_id UUID REFERENCES analyses(id),
health score SMALLINT,
scanned at TIMESTAMPTZ DEFAULT NOW()

CREATE INDEX idx scans user date ON scans(user id, scanned at DESC);

profile hash VARCHAR(64), -- SHA-256 do perfil alimentar (para cache)
ingredients analysis JSONB, -- Array de andlises por ingrediente
health sco SMALLINT,

reakdown JSONB, -- {"naturalness": 20, "nutrition": 40,

probl op3 TEXT[],
summary TEXT,
alerts JSONB,

model version VARCHAR(50), -- "gpt-40-mini-2024-07-18"

tokens used INTEGER,

created at TIMESTAMPTZ DEFAULT NOW()

CREATE INDEX idx analyses product profile ON analyses(product id, profile hash);

-- Perfis Alimentares|
CREATE TABLE dietary profiles (
id UUID PRIMARY KEY DEFAULT gen_ random uuid(),

id(
user_id UUID UNIQUE REFERENCES users(id) ON DELETE CASCADE,

allergies TEXT[] DEFAULT '{}',
intolerances TEXT[] DEFAULT '{}',

diet VARCHAR(50),

avoid TEXT[] DEFAULT '{}',

goals TEXT[] DEFAULT '{}',
conditions TEXT[] DEFAULT '{}',
updated at TIMESTAMPTZ DEFAULT NOW()

Fluxo Principal

Usudrio abre app (PWA)

— Tela de Scan

navigator.mediaDevices.getUserMedia({video: {

facingMode: "environment"

|
|
|)
|
L

ZXing-js detecta barcode em tempo real

T
| barcode detectado (ex: "7891000100103")

POST /api/vl/scan
{ "barcode": "7891000100103" }

v

— Backend

RATE LIMIT CHECK
Redis: INCR user:{id}:scans:{date}

Se >= limite - 402 (upgrade para premium)

BUSCA PRODUTO (3 camadas)
a) Redis GET product:{barcode}
- HIT? Retorna cached (< 5ms)
b) PostgreSQL SELECT * FROM products WHERE barcode=

- HIT? Retorna + atualiza Redis |
c) Open Food Facts API GET /api/v2/product/{barcode}|
- HIT? Persiste no DB + Redis

- MISS? Retorna "Produto ndo encontrado"

BUSCA ANALISE (cache por produto + perfil)

profile hash = SHA256(user.dietary profile)
SELECT * FROM analyses

- HIT? Retorna cached
- MISS? Chama GPT-40-mini

. ANALISE IA (se cache miss)
OpenAI Chat Completion:
model: "gpt-4o0-mini"

response format: { type: "json object" }

messages: [system prompt, user prompt]

Parse JSON - Persiste em analyses

CALCULA SCORE (se ndo veio da andlise)
Combina: Nutri-Score + NOVA + IA + Nutricgdo

BUSCA ALTERNATIVAS
SELECT FROM products WHERE category = X
AND health score > current score

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| WHERE product id = X AND profile hash = Y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ORDER BY health score DESC, scan count DESC

LIMIT 5

. REGISTRA SCAN
INSERT INTO scans (...)
UPDATE users SET xp = xp + 10
Verifica achievements

8. RETORNA RESPONSE

T

Frontend

— Resultado

Chocolate ao Leite XYZ
Marca ABC

Evitar

n ALERTAS

|

|

|

|

|

|

|

|

|

|

| '+ Contém GLUTEN (incompativel com seu perfil) |
| + Alto teor de agicar (52g/100g)
|
|
|
|
|
|
|
|
|
|
|
|
1

<{? INGREDIENTES

e Aclcar « Primeiro ingrediente = base

e Gordura vegetal hidrogenada « Trans

e Cacau « Natural

e Lecitina de soja « a Emulsificante

[ver todos -]

ALTERNATIVAS MAIS SAUDAVEIS
e Chocolate 70% Marca Y — Score: 68 (+36)
e Chocolate Organico Z — Score: 74 (+42)

Sequéncia temporal (target < 5s)

Tempo (cache miss)

Etapa Tempo (cache hit)
Decodificagao barcode (client) ~200ms

Request - Backend ~100ms

Rate limit check (Redis) ~5ms

Busca produto ~5ms (Redis)
Busca/gera analise IA ~5ms (cache)
Calcula score ~10ms

Busca alternativas ~50ms

Registra scan + XP ~20ms

~200ms

~100ms

~5ms

~800ms (OFF API)

~2500ms (GPT)

~10ms

~50ms

~20ms

Response - Frontend ~100ms ~100ms

Render resultado ~200ms ~200ms

TOTAL ~700ms ~4000ms v

APIs Externas

Open Food Facts

e URL: https://world.openfoodfacts.org/api/v2/product/{barcode}.json
e Custo: Gratuita, open source

e Rate limit: 100 req/min (ser gentil)

e Cobertura: ~3M produtos, boa cobertura Brasil

e User-Agent obrigatério: Aletheia/1.0 (contato@aletheia.app)

e Fallback: Se produto ndo encontrado, permitir cadastro manual (v2.0)

OpenAl GPT-40-mini

e Endpoint: POST https://api.openai.com/v1l/chat/completions
e Modelo: gpt-40-mini
e Custo estimado:
o Input: ~500 tokens/scan x $0.15/1M = $0.000075/scan
o Qutput: ~800 tokens/scan x $0.60/1M = $0.00048/scan
Total: ~$0.00055/scan =~ R$0.003/scan
o 10K scans/dia = ~R$30/dia

o

e Timeout: 10 segundos
e Retry: 3x com exponential backoff (1s, 2s, 4s)

e Fallback: Analise baseada em regras (lista de ingredientes conhecidos)

Stripe

e Uso: Assinaturas (Checkout + Customer Portal)
e Webhooks: invoice.paid , customer.subscription.updated , customer.subscription.deleted

e Planos:

o Free: R$0 (3 scans/dia)

o Premium: R$14,90/més (ilimitado + features extras)

Google Cloud Vision (fallback barcode)

e Uso: Apenas quando ZXing-js falha na decodificacao client-side

Endpoint: POST https://vision.googleapis.com/v1/images:annotate

Custo: $1.50/1K imagens (primeiras 1K/més gratis)

Alternativa free: QuaggaJS como segundo decoder client-side

PWA & Camera

Service Worker (next-pwa)

equire('next-pwa') ({
register: true,
skipWaiting: true,

runtimeCaching: [

urlPattern: /~https:\/\/api\.aletheia\.app\/api\/v1\/products\/.*/,
handler: 'StaleWhileRevalidate',
options: {

cacheName: 'product-cache',

expiration: { maxEntries: 200, maxAgeSeconds: 86400 }

Camera & Barcode Scanner

// hooks/useBarcodeScan.ts

import { BrowserMultiFormatReader } from '@zxing/library';

export function useBarcodeScan()
const videoRef = useRef<HTMLVideoElement>(null);

const readerRef = useRef(new BrowserMultiFormatReader());

const startScan = async () => {
const stream = await navigator.mediaDevices.getUserMedia({
facingMode: 'environment', // camera traseira
width: { ideal: 1280 },
height: { ideal: 720 },

videoRef.current!.srcObject = stream;

readerRef.current.decodeFromVideoDevice(

undefined, // usa device padrao

videoRef.current!,

(result, error) => {

if (result) {

// Vibra para feedback]
navigator.vibrate?. (200);
// Envia barcode para API
onBarcodeDetected(result.getText()

return { videoRef, startScan, stopScan };

Manifest (PWA)

"name": "Aletheia - Scanner de Rétulos",

"short name": "Aletheia",

"description": "Descubra a verdade sobre o que vocé come",

"start url": "/",

"display": "standalone",

"orientation": "portrait",
“"theme color": "#16A34A",
"background color": "#FFFFFF",

{ "src": "/icons/icon-192.png", "sizes": "192x192", "type": "image/png" },

{ "src": "/icons/icon-512.png", "sizes": "512x512", "type": "image/png" }

Monetizacao Técnica

Planos
Feature Free Premium (R$14,90/més)
Scans por dia 3 llimitado
Historico Ultimos 7 dias Completo
Analise 1A Basica Detalhada + perfil
Alternativas Top 2 Top 5 + comparativo
Perfil alimentar Alergias apenas Completo (condicbes)
Export (CSV/PDF) X v
Leaderboard X 4
Sem anuncios X Z

Fluxo Stripe

Usudrio clica "Upgrade Premium"
POST /billing/checkout-session
- Stripe Checkout Session (mode: subscription)

- Redirect para Stripe hosted page

Stripe processa pagamento

Webhook: invoice.paid

- Backend atualiza user.plan id = 2

- Redis: SET user:{id}:plan premium
Usuario retorna ao app - plano ativo

Sistema de Créditos
)

async def check_scan_credits(user_id: str)

today = date.today().isoformat()

key = f'credits:{user id}:{today}"

Usuario premium - sempre permitido

if await is premium(user id):

used = await redis.get(key)
if used and int(used) >= DAILY FREE LIMIT: # 3
return False

await redis.incr(key)
await redis.expire(key, 86400) # expira em 24h

return True

Performance

Metas
Métrica Target Estratégia
Scan - resultado < 5s (cold) / < 1s (cached) Cache 3 camadas
TTFB (first byte) < 200ms Edge deploy (Vercel)
LCP < 2.5s SSR + lazy load imagens
Bundle size < 150KB (gzipped) Tree shaking, dynamic imports
Lighthouse PWA > 90 Service worker, manifest, HTTPS
API p95 latency < 500ms (cached) Redis, connection pooling
Uptime 99.9% Health checks, auto-restart

Estratégias de Cache

Cache Architecture

Client (React Query)

L staleTime: 5min

L Produtos escaneados ficam em meméria

Service Worker (Workbox)

L- StaleWhileRevalidate para /products

- CacheFirst para imagens estaticas

Redis (Server)
- product:{barcode} - TTL 24h |
L analysis:{product id}:{hash} - TTL 7d |
L user:{id}:credits:{date} - TTL 24h

PostgreSQL

- Source of truth, updated via cron

- Produtos atualizados a cada 30 dias

Otimizacdes Backend

e Connection pooling: SQLAIchemy async pool (min=5, max=20)

e Bulk operations: Batch insert para alternativas

¢ indices: barcode (B-tree), category (B-tree), scans por user+date
e Async everywhere: FastAPI + httpx (Open Food Facts) + asyncpg

e Streaming response: Para analises longas, usar SSE (Server-Sent Events)

Design & UX

Identidade Visual

Elemento Especificacao

Nome Aletheia (&An6ela = verdade)

Olho grego estilizado (Nazar/Mati) com iris em forma de

Logo barcode

Cores primarias Verde #16A34A (saude) + Branco #FFFFFF (clean)

Cores secundarias Cinza #6B7280 (texto) + Verde claro #DCFCE7 (backgrounds)
Cores de score #EF4444 - @ #F97316 - @ #EAB308 - #22C55E
Tipografia Inter (Ul) + Plus Jakarta Sans (headings)

icones Lucide Icons (consistente, leve)

Bordas rounded-x1 (16px), sombras suaves

Espacamento Grid 8px, padding generoso

Telas Principais

1. SPLASH / ONBOARDING
- Logo Aletheia (olho grego animado)

- "Descubra a verdade sobre o que vocé come"

- 3 slides: Scan - Entenda - Escolha melhor]

- CTA: "Comecar" - setup perfil alimentar]

- Header: logo + streak # + XP bar]

- Botdo central grande: "® Escanear"

- Ultimos scans (horizontal scroll)

- Score médio da semana (mini gauge)
- Tip do dia (IA)

- Camera fullscreen com overlay|

- Guia visual: "Aponte para o cdédigo de barras"

- Auto-detect + vibracaol

- Loading: animagao do olho "analisando"

4. RESULTADO|

- Score gauge animado (destaque principal)

- Alertas personalizados (cards vermelhos/amarelos)

- Lista de ingredientes (expandivel, com icones)

- Alternativas (cards horizontais)

- Botdes: Salvar | Compartilhar | Escanear outro|

5. HISTORICO

- Timeline vertical com mini scores

- Filtros: periodo, categoria, score

- Grafico de tendéncia (line chart)

- Dados pessoais

- Perfil alimentar (alergias, dieta, goals)

- Plano (free/premium)

- Gamificagdo (nivel, badges, streak)

- Configuracgdes

Micro-interacoes

e Scan detectado: Vibracao + flash verde + som sutil

e Scorereveal: Animacao circular de 0 até valor final (1.5s)

¢ Ingrediente tap: Expande com animagao suave (Framer Motion)
e Achievement unlocked: Toast animado com confetti

e Pull to refresh: Animacao do olho grego piscando

Roadmap

MVP — Semanas 1-3

Semana 1: Infraestrutura + Scanner - [] Setup monorepo (turborepo ou pasta separada) - [] Backend: FastAPI
boilerplate, auth JWT, migrations - [] Frontend: Next.js 14, PWA setup, layout base - [] Scanner: camera + ZXing-js
funcionando - [] Integracao Open Food Facts (busca basica)

Semana 2: IA + Core Features - [] Analise IA com GPT-40-mini - [] Score de saude (algoritmo v1) - [] Tela de
resultado completa - [] Cache Redis para produtos + analises - [] Historico basico (lista de scans)

Semana 3: Polish + Deploy - [| Design system (cores, tipografia, componentes) - [] Rate limiting (3 scans/dia free) -
[] Alternativas basicas - [] Error handling e loading states - [] Deploy: Vercel (front) + Railway (back) - [] Testes
E2E dos fluxos principais

Entregaveis MVP: - PWA funcional no celular - Scan - resultado com score + ingredientes explicados - 3 scans
gratis por dia - Histérico dos ultimos 7 dias
v1.0 — Semanas 4-6

o [JPerfil alimentar completo
e [JAlertas personalizados baseados no perfil

e [|Stripe integration (premium)

°

[|Gamificacao (XP, streaks, badges)

°

[IOnboarding flow
e [JPush notifications (Web Push API)

°

[_Joffline mode (scans salvos localmente)

v2.0 — Semanas 7-10

°

[ICompartilhar resultado (social cards)

°

[IComparar 2 produtos lado a lado

°

[JLeaderboard semanal

°

[JOCR de ingredientes (foto da lista quando sem barcode)

°

[Cadastro de produtos por usuarios

°

[JAPI publica para desenvolvedores

e [linternacionalizacao (PT-BR, EN, ES)

v3.0 — Futuro

e [JApp nativo (React Native ou Capacitor)
¢ [Jintegracéo com supermercados (precos)

e [|Scan de cardapios de restaurantes

°

[]Diario alimentar com score diario

°

[lRecomendacdes de receitas saudaveis

°

[lintegracdo com Apple Health / Google Fit

Estrutura de Diretorios

— backend/|

F— init .py|

|— main.py FastAPI app factory

F— config.py Settings (pydantic-settings)

— database.py SQLAlchemy async engine

— dependencies.py Shared deps (get db, get current user)
— models/ SQLAlchemy models

Pydantic schemas

— services/ # Business logic
— auth service.

|
| — scan_service.

| — product service.py
|

|

— ai service.pyj

— score service.pyj

alternatives service.py

|T

— credits_service.py

— gamification service.py|
integrations/ # External APIs

— open_food facts.py|
— openai_client.py|
L— stripe client.py
1tils

— cache.py

— security.py

L— prompts.py

T

alembic/ # Migrations|
sts

ockerfile

T

requirements. txt]

pyproject.toml

W
T

rontend

o
~

Next.js App Router

Q
o
o

~

ayout.tsx

DI

Home

Q
Q
0]
~+
w0
x

scan/page.tsx # Scanner
result/[id]/page.tsx

|

istory/page.tsx
profile/page.tsx

FiTiTTT

premium/page.tsx
/

o
[=)
3
©
c |O
= =l
~ |
=}
=
n

Design system
scanner

— CameraView.tsx

L— BarcodeOverlay.tsx

| =
1 = /
| |
|
| | | = resul
|
|
|
|
L—

result

— ScoreGauge.tsx

— IngredientList.tsx
[— AlertCards.tsx

L— AlternativeCards.tsx
gamification/|

— XPBar.tsx

L— BadgeGrid.tsx

— useBarcodeScan.ts
— useAuth.ts
L— useScan.ts

=
o
o
=~
[
.

Axios instance
L— utils.ts|
s
f— authStore.ts # Zustand
L— scanStore.ts
public/
— manifest.json

F— sw.j

!
ANE
o o
b} S~
[0 Q
0 ©

:
-
%]

S~

=
(o)
o
=3
[
~

next.config.js

T

tailwind.config.ts
package. json|

I

T
Tle

ARQUITETURA-TECNICA.md # Este arquivo
API.md # Documentacao da API
DEPLOY.md # Guia de deploy]

“

— docker-compose.yml # PostgreSQL + Redis + Backend

L— README.md

Estimativa de Custos (10K usuarios ativos)

Servico Custo/més

Vercel (frontend) Free (hobby) ou $20 (pro)
Railway (backend + DB + Redis) ~$20-40

OpenAl GPT-40-mini (~30K scans/més) ~R$90 (~$17)

Stripe (2.5% + fees) Variavel

Dominio ~R$40/ano

Total estimado ~R$250-400/més

Break-even: ~25-30 assinantes premium (R$14,90 x 30 = R$447)

"Aletheia — porque vocé merece saber a verdade sobre o que come.” @&

