OALETHEIA MANUAL TECNICO

ALETHEIA - Manual Técnico

Arquitetura Geral

CLIENTE

Next.js (PWA) - Porta 3080
aletheia.aivertice.com (Cloudflare)

NGINX (Reverse Proxy)
SSL/TLS Termination
/ - :3080 (Frontend)

/api - :8090 (Backend)

Next.js Frontend FastAPI Backend
Porta 3080 | Porta 8090

/opt/aletheia/frontend| /opt/aletheia/backend
|

| |
PostgreSQL | Open Food Facts | OpenAI API
aletheia DB | API | GPT-40-mini
| |
.]

Porta 5432 (3M+ prods)

Stack Tecnoldgico

Camada Tecnologia Versao
Frontend Next.js (React) 14 .x
Backend FastAPI (Python) 0.100+
Banco de Dados PostgreSQL 15+

1A OpenAl GPT-40-mini -
Process Manager PM2 5.x
Proxy/SSL Nginx 1.24+

CDN/DNS Cloudflare -

Deploy e Infraestrutura

Estrutura de Diretérios

/opt/aletheia/|
/

o
Q
s
x
3 | @
=
o

requirements. txt

o

—h
=
o

ntend/
package. json|

i

.env.local|
public/|

T

L— sw.js (Service Worker)

I

"

docs/

PM2 - Gerenciamento de Processos

Processos ativos: - aletheia-backend - FastAPI (porta 8090) - aletheia-frontend - Next.js (porta 3080)

Comandos uteis:

Status dos processos
pm2 status

Logs em tempo real

pm2 logs aletheia-backend

pm2 logs aletheia-frontend

Reiniciar processos

pm2 restart aletheia-backend

pm2 restart aletheia-frontend

Reiniciar tudo
pm2 restart all

Salvar configuragao

Nginx - Configuracao

Arquivo: /etc/nginx/sites-available/aletheia

server {

listen 443 ssl http2

’
server name aletheia.aivertice.com;

ssl certificate /etc/letsencrypt/live/aletheia.aivertice.com/fullchain.pem;

ssl _certificate key /etc/letsencrypt/live/aletheia.aivertice.com/privkey.pem;

Frontend
location / {

proxy_pass http://127.0.0.1:3080;
proxy http version 1.1;

proxy set header Upgrade $http upgrade;

proxy set header Connection 'upgrade';

proxy set header Host $host;

proxy cache bypass $http upgrade;

Backend API

location /api {
proxy pass http://127.0.0.1:8090;
proxy http version 1.1;

proxy set header Host $host;

proxy set header X-Real-IP $remote addr;

proxy set header X-Forwarded-For $proxy add x forwarded for;

proxy set header X-Forwarded-Proto $scheme;

listen 80;

server_name aletheia.aivertice.com;

return 301 https://$server name$request uri;

SSL/TLS

e Provedor: Let's Encrypt (Certbot)
* Renovacao: Automatica via cron

e CDN: Cloudflare (SSL Full Strict)

Renovar certificado manualmente
sudo certbot rene

Verificar certificado

sudo certbot certificates

Banco de Dados

Conexao

Connection String:

postgresql://aletheia:Aletheia2026'@localhost:5432/aletheia

Tabelas Principais

users

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,

name VARCHAR(255),

plan VARCHAR(50) DEFAULT 'free', -- 'free' ou 'premium'
scans_today INTEGER DEFAULT 0,

last scan date DATE,

created at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()

products

CREATE TABLE products (
id SERIAL PRIMARY KEY,
barcode VARCHAR(50) UNIQUE NOT NULL,
name VARCHAR(255),
brand VARCHAR(255),
categories TEXT,

ingredients TEXT,

nutrition data JSONB,

image url TEXT,

source VARCHAR(50), -- 'openfoodfacts', 'manual'
created at TIMESTAMP DEFAULT NOW(),

updated at TIMESTAMP DEFAULT NOW()

scans

CREATE TABLE scans (
id SERIAL PRIMARY KEY,
user id INTEGER REFERENCES users(id),
product id INTEGER REFERENCES products(id),
barcode VARCHAR(50),
score INTEGER, -- 0-100
analysis JSONB, -- Analise completa da IA

recipe TEXT, -- Receita sugerida
scanned at TIMESTAMP DEFAULT NOW()

Comandos Uteis

Conectar ao banco

psql -U aletheia -d aletheia -h localhost

pg dump -U aletheia -d aletheia > backup $(date +%Y%m%d).sql

psql -U aletheia -d aletheia < backup 20260210.sql

APIs e Endpoints

Autenticacao

POST /api/auth/register
Registra novo usuario.

Request:

"email": "usuario@email.com",

"password": "senhal23",

"name": "Nome do Usuario"

Response (201):

"email": "usuario@email.com",

"name": "Nome do Usuario",

"plan": "free",
"token": "eyJhbGci0iJIUzI1INiIs..."

POST /api/auth/login
Autentica usuario existente.

Request:

"email": "usuario@email.com",

"password": "senhal23"

Response (200):

"token": "eyJhbGciO0iJIUzI1NiIs...",

"email": "usuario@email.com",

"name": "Nome do Usuario",

"plan": "free",

"scans_today": 2

Scans

POST /api/scan
Analisa um produto pelo cédigo de barras.

Headers:

Authorization: Bearer <token>

Request:

"barcode": "7891000100103"

Response (200):

"id": 123,

"barcode": "7891000100103",
"name": "Leite Condensado",

"brand": "Moca",

"image url": "https://..."

"score": 25,
"classification": "Péssimo"

"summary": "Produto com alto teor de aglcar...",

"positives": ["Fonte de cdlcio"],

"negatives": ["Alto teor de acglcar", "Calorias elevadas"],

"additives": [],

"nutrition": {

"calories": 321,

"sugar": 55,
"sodium": 128

"recipe": {
"title": "Leite condensado caseiro saudavel",

"ingredients": ["1 litro de leite desnatado", "..."],

"instructions":

Erros: - 403 : Limite de scans atingido (plano free) - 4604 : Produto ndo encontrado - 5600 : Erro na anadlise
Histérico

GET /api/history
Lista historico de scans do usuario.

Headers:

Authorization: Bearer <token>

Query Params: - limit (opcional): Numero de resultados (default: 20) - offset (opcional): Paginacao
Response (200):

"total": 45,

"scans": [

"id": 123,
"barcode": "7891000100103",

"product name": "Leite Condensado",

"score": 25,
"scanned at": "2026-02-10T14:30:00Z"

GET /api/history/{id}
Retorna detalhes de um scan especifico.

Response (200):

"id": 123,
"product": { ...

"score": 25,
"analysis": {

"recipe": {
"scanned at": "2026-02-10T14:30:00Z"

Integracoes

Open Food Facts API
Base de dados aberta com mais de 3 milhdes de produtos.

Endpoint:

https://world.openfoodfacts.org/api/v2/product/{barcode}.json

Exemplo:

import requests

def get product(barcode: str):

url = f'https://world.openfoodfacts.org/api/v2/product/{barcode}.json"
response = requests.get(url)

if response.status code == 200:

data = response.json()
if data.get("status") == 1:
return data["product"]

return None

OpenAl GPT-40-mini
Usamos o modelo GPT-40-mini para analise inteligente dos ingredientes.

Uso:

from openai import OpenAI

client = OpenAI(api key=o0s.getenv("OPENAI API KEY"))

def analyze product(product data: dict) -> dict:

prompt = f"""
Analise este produto alimenticio e forneca:
. Score de salde (0-100)
Pontos positivos

Pontos negativos

. Andlise dos aditivos|

. Sugestdo de receita saudavel alternativa

Produto: {product data['name']}
Ingredientes: {product data['ingredients']}

Valores nutricionais: {product data['nutrition']}

response = client.chat.completions.create(
model="gpt-4o0-mini",

messages=[{"role": "user", "content": prompt}l,

response format={"type": "json object"}

||

return json.loads(response.choices[0].message.content)

PWA / Service Worker

O ALETHEIA é uma Progressive Web App (PWA), permitindo: - Instalagao na home screen - Funcionamento parcial
offline - Notificagdes push (futuro)

Service Worker

Arquivo: /opt/aletheia/frontend/public/sw.js

const CACHE NAME = 'aletheia-vl';
const urlsToCache = [
1;

self.addEventListener('install', (event) => {

event.waitUntil(
caches.open(CACHE NAME)
.then((cache) => cache.addAll(urlsToCache))

self.addEventListener('fetch', (event) => {

.then((response) => response || fetch(event.request))

Manifest

Arquivo: /opt/aletheia/frontend/public/manifest.json

"name": "ALETHEIA",

"short name": "ALETHEIA",

"description": "Scanner de rétulos com IA",
"start urt": "/",

"display": "standalone",

"background color": "#ffffff",

"theme color": "#22c55e",

"icons": [

"src": "/icon-192.png",
"sizes": "192x192",
"type": "image/png"

"src": "/icon-512.png",
"sizes": "512x512",
"type": "image/png"

£ Variaveis de Ambiente

Backend (.env)

DATABASE _URL=postgresql://aletheia:Aletheia2026!@localhost:5432/aletheia

OpenAl
OPENAI_API KEY=sk-...

JWT SECRET=sua-chave-secreta-muito-longa
JWT_ALGORITHM=HS256
JWT_EXPIRATION_ HOURS=24]

Ap
[APP_ENV=production
DEBUG=false

CORS_ORIGINS=https://aletheia.aivertice.com

Frontend (.env.local)

NEXT PUBLIC API URL=https://aletheia.aivertice.com/api
NEXT PUBLIC APP_NAME=ALETHEIA

lul Monitoramento

PM2

Dashboard em tempo real

Status detalhado
pm2 show aletheia-backend

pm2 info aletheia-backend

Logs

Logs do backend
tail -f ~/.pm2/logs/aletheia-backend-out.log
tail -f ~/.pm2/logs/aletheia-backend-error.log

Logs do frontend
tail -f ~/.pm2/logs/aletheia-frontend-out.log

Logs do Nginx

tail -f /var/log/nginx/access.log

tail -f /var/log/nginx/error.log|

Logs do PostgreSQL

tail -f /var/log/postgresql/postgresql-15-main.log

Backup e Manutencao

Backup Automatico (Cron)

Editar crontab

Adicionar backup diario as 3h
0 3 * * * pg dump -U aletheia -d aletheia > /opt/aletheia/backups/backup_$(date +\%Y\%m\%d).sql|

Limpar backups antigos (manter Gltimos 30 dias)
0 4 * * * find /opt/aletheia/backups -name "*.sql" -mtime +30 -delete

Manutengao do Banco

-- Vacuum e andlise (rodar semanalmente)
VACUUM ANALYZE;

-- Verificar tamanho das tabelas|
SELECT

relname as table,

pg size pretty(pg total relation size(relid)) as size|

FROM pg catalog.pg statio user tables
ORDER BY pg total relation size(relid) DESC;

Atualizacoes

Backend
cd /opt/aletheia/backend

pip install -r requirements.txt

pm2 restart aletheia-backend

pm2 restart aletheia-frontend

Troubleshooting

Problema: Backend nao inicia

Verificar logs
pm2 logs aletheia-backend --lines 50

Verificar porta em uso
lsof -i :8090

Testar manualmente
cd /opt/aletheia/backend

python -m uvicorn main:app --host 0.0.0.0 --port 8090

Problema: Erro de conexao com banco

Verificar se PostgreSQL estad rodando

sudo systemctl status postgresql

Testar conexao

psql -U aletheia -d aletheia -h localhost -c "SELECT 1"

Problema: Certificado SSL expirado

sudo certbot rene

Reiniciar Nginx
sudo systemctl restart nginx

Problema: Open Food Facts nao responde

Testar API diretamente)
curl "https://world.openfoodfacts.org/api/v2/product/7891000100103. json"

Verificar rate limiting (médx 100 req/min)

Contatos Técnicos

¢ Infraestrutura: infra@aivertice.com

e Desenvolvimento: dev@aivertice.com

Ultima atualizagéo: Fevereiro 2026

