
�		ALETHEIA	—	Arquitetura	Técnica
Aletheia	(ἀλήθεια)	—	“verdade”	em	grego.	Scanner	de	rótulos
alimentares	com	IA	que	revela	a	verdade	sobre	o	que	você	come.

�	Índice

1.	 Visão	Geral
2.	 Stack	Tecnológica
3.	 Arquitetura	de	Sistema
4.	 Módulos
5.	 Modelo	de	Dados
6.	 Fluxo	Principal
7.	 APIs	Externas
8.	 PWA	&	Câmera
9.	 Monetização	Técnica

10.	 Performance
11.	 Design	&	UX
12.	 Roadmap
13.	 Estrutura	de	Diretórios

Visão	Geral

O	usuário	aponta	a	câmera	do	celular	para	o	código	de	barras	de	um
alimento.	Em	menos	de	5	segundos,	recebe:

Explicação	simples	de	cada	ingrediente	(“como	se	tivesse	10	anos”)
Score	de	saúde	de	0	a	100	(com	breakdown	visual)
Alertas	sobre	ingredientes	problemáticos	(corantes,	conservantes,
excesso	de	sódio)
Alternativas	mais	saudáveis	disponíveis	na	mesma	categoria
Compatibilidade	com	seu	perfil	alimentar	(alergias,	dietas,	restrições)

Stack	Tecnológica

Backend

Componente Tecnologia Justificativa

Framework FastAPI	(Python	3.12)
Async	nativo,	tipagem
forte,	docs
automáticas

Migrations

file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#vis%C3%A3o-geral
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#stack-tecnol%C3%B3gica
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#arquitetura-de-sistema
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#m%C3%B3dulos
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#modelo-de-dados
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#fluxo-principal
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#apis-externas
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#pwa--c%C3%A2mera
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#monetiza%C3%A7%C3%A3o-t%C3%A9cnica
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#performance
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#design--ux
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#roadmap
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#estrutura-de-diret%C3%B3rios

ORM SQLAlchemy	2.0	+
Alembic

versionadas,	async
support

Banco	principal PostgreSQL	16
JSONB	para	dados
flexíveis,	full-text
search

Cache Redis	7
Cache	de	produtos,
rate	limiting,	sessões

Task	queue Celery	+	Redis	broker
Análises	IA	em
background

Auth
JWT	(access	+	refresh
tokens)

Stateless,	rotação	de
tokens

Servidor Uvicorn	+	Gunicorn
Workers	async	para
alta	concorrência

Frontend

Componente Tecnologia Justificativa

Framework Next.js	14	(App	Router) SSR,	RSC,	PWA-ready

UI Tailwind	CSS	+	Radix	UI
Design	system
consistente,	acessível

Estado Zustand
Leve,	simples,	sem
boilerplate

Câmera/Barcode
navigator.mediaDevices
+	ZXing-js

Scan	direto	no
browser,	sem	SDK
nativo

HTTP Axios	+	React	Query
(TanStack)

Cache	client-side,
retry,	optimistic
updates

PWA next-pwa	(Workbox)
Offline	support,
install	prompt

Animações Framer	Motion
Score	gauge,
transições	suaves

Infra

Componente Tecnologia

Deploy	backend Railway	/	Fly.io	(ou	VPS	com	Docker)

Deploy	frontend Vercel

CI/CD GitHub	Actions

Monitoramento Sentry	(erros)	+	Uptime	Kuma	(status)

Logs Estruturados	com	structlog	→	stdout

Storage S3-compatible	(imagens	de	produtos)

Arquitetura	de	Sistema
┌───┐
│																				CLIENTE	(PWA)																					│
│		Next.js	14	·	Tailwind	·	ZXing-js	·	Service	Worker		│
└──────────────────────┬──────────────────────────────┘
																							│	HTTPS
																							▼
┌───┐
│																			API	GATEWAY																								│
│														FastAPI	·	Uvicorn	·	JWT																		│
│																																																						│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│			Auth			│	│	Scanner		│	│	Produtos		│												│
│		│		Module		│	│		Module		│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│	Análise		│	│		Score			│	│Alternativ.│												│
│		│			IA					│	│		Saúde			│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
│		┌──────────┐	┌──────────┐	┌───────────┐												│
│		│Histórico	│	│		Perfil		│	│Gamificação│												│
│		│	Module			│	│Alimentar	│	│		Module			│												│
│		└──────────┘	└──────────┘	└───────────┘												│
└───────┬──────────┬──────────────┬───────────────────┘
								│										│														│
			┌────▼───┐	┌───▼────┐		┌─────▼──────┐
			│Postgres│	│	Redis		│		│		Celery				│
			│		16				│	│			7				│		│		Workers			│
			└────────┘	└────────┘		└─────┬──────┘
																																│
																				┌───────────▼───────────┐
																				│			APIs	Externas							│
																				│	•	Open	Food	Facts					│
																				│	•	OpenAI	GPT-4o-mini		│
																				│	•	Stripe														│
																				└───────────────────────┘

Módulos

1.	Auth	Module

Responsabilidade:	Registro,	login,	gerenciamento	de	sessão.

POST	/auth/register								→	Cria	conta	(email	+	senha	ou	OAuth)
POST	/auth/login											→	Retorna	access_token	+	refresh_token
POST	/auth/refresh									→	Renova	access_token
POST	/auth/forgot-password	→	Envia	email	de	reset
POST	/auth/reset-password		→	Aplica	nova	senha
GET		/auth/me														→	Retorna	perfil	do	usuário	logado
DELETE	/auth/me												→	Deleta	conta	(LGPD)

Senhas:	bcrypt	(cost	factor	12)
Tokens:	JWT	RS256,	access_token	(15min),	refresh_token	(30	dias)
OAuth:	Google	e	Apple	Sign-In	(futuro)
Rate	limit:	5	tentativas	de	login	por	minuto	por	IP

2.	Scanner	Module

Responsabilidade:	Decodificação	de	barcode	e	orquestração	do	fluxo	de
scan.

POST	/scan																	→	Recebe	barcode,	orquestra	busca	+	
análise
GET		/scan/{scan_id}							→	Retorna	resultado	completo	de	um	scan

Fluxo	interno:	1.	Recebe	barcode	(EAN-13/UPC-A)	do	frontend	2.	Verifica
rate	limit	do	usuário	(créditos)	3.	Busca	produto	no	cache	Redis	→	DB	local
→	Open	Food	Facts	4.	Se	produto	novo,	persiste	no	DB	5.	Dispara	análise	IA
(sync	se	cache	hit,	async	se	primeira	vez)	6.	Retorna	resultado	consolidado

Barcode	no	frontend:	-	ZXing-js	para	decodificação	client-side	-	Fallback:
envio	de	imagem	para	Google	Cloud	Vision	API	(barcode	detection)	-
Suporte:	EAN-13,	EAN-8,	UPC-A,	UPC-E

3.	Produtos	Module

Responsabilidade:	CRUD	de	produtos,	cache	e	sincronização	com	Open
Food	Facts.

GET		/products/{barcode}											→	Busca	produto	por	barcode
GET		/products/{barcode}/nutrition	→	Dados	nutricionais	detalhados
POST	/products/report														→	Usuário	reporta	dados	
incorretos

Estratégia	de	cache	(3	camadas):

Camada TTL Detalhes

Redis 24h
Hot	cache,	produtos	escaneados
recentemente

PostgreSQL 30	dias Cache	persistente,	atualizado	via	cron

Open	Food
Facts

Sob
demanda Source	of	truth,	fallback

Dados	armazenados	do	produto:	-	Nome,	marca,	categoria	-	Lista	de
ingredientes	(texto	original)	-	Tabela	nutricional	(por	100g	e	por	porção)	-
Nutri-Score	(A-E)	quando	disponível	-	NOVA	group	(1-4,	grau	de
processamento)	-	Imagens	(frente,	ingredientes,	nutricional)	-	Alérgenos
declarados

4.	Análise	IA	Module

Responsabilidade:	Análise	inteligente	de	ingredientes	via	GPT-4o-mini.

POST	/analysis/ingredients			→	Analisa	lista	de	ingredientes
GET		/analysis/{analysis_id}	→	Retorna	análise	completa

Prompt	Engineering:

SYSTEM_PROMPT	=	"""

Otimizações:	-	Cache	de	análises	por	hash(ingredientes	+	perfil_usuario)	-
GPT-4o-mini	para	custo	baixo	(~$0.15/1M	input	tokens)	-	Structured	output
(JSON	mode)	para	parsing	confiável	-	Timeout:	10s,	retry	com	exponential
backoff	-	Fallback:	análise	baseada	em	regras	se	IA	falhar

Response	format	(JSON):

Você	é	um	nutricionista	especialista	que	explica	ingredientes	
alimentares	de	forma	simples,	como	se	falasse	com	alguém	sem	
formação	técnica.

Para	cada	ingrediente,	forneça:
1.	Nome	popular	(se	diferente	do	técnico)
2.	O	que	é	e	para	que	serve	no	produto	(1-2	frases)
3.	Classificação:	✅	Natural	|	⚠		Atenção	|	�	Evitar
4.	Motivo	da	classificação	(1	frase)

Ao	final,	gere:
-	Score	de	saúde	(0-100)	com	justificativa
-	Top	3	ingredientes	problemáticos	(se	houver)
-	Resumo	em	1	parágrafo	para	leigo
"""

USER_PROMPT_TEMPLATE	=	"""
Produto:	{product_name}
Marca:	{brand}
Categoria:	{category}
Ingredientes:	{ingredients_text}
Tabela	nutricional	(por	100g):	{nutrition_table}
Perfil	do	usuário:	{user_profile}		#	alergias,	restrições

Analise	este	produto.
"""

{
		"ingredients":	[
				{
						"name":	"Açúcar	invertido",
						"popular_name":	"Açúcar	líquido",
						"explanation":	"É	açúcar	comum	dissolvido	e	processado	para	

ficar	líquido.	Usado	para	adoçar	e	dar	textura.",
						"classification":	"warning",
						"reason":	"Alto	índice	glicêmico,	contribui	para	picos	de	

açúcar	no	sangue."
				}
],
		"health_score":	35,
		"score_breakdown":	{
				"naturalness":	20,
				"nutrition":	40,
				"processing":	30,
				"additives":	50
		},
		"problematic_top3":	["Açúcar	invertido",	"Gordura	vegetal	

hidrogenada",	"Corante	caramelo	IV"],
		"summary":	"Este	produto	é	ultraprocessado	com	alto	teor	de	

açúcar...",
		"alerts":	[
				{"type":	"allergen",	"message":	"Contém	glúten	(incompatível	com	

seu	perfil)"}

5.	Score	de	Saúde	Module

Responsabilidade:	Cálculo	do	score	0-100,	combinando	dados	nutricionais
+	análise	IA.

Algoritmo	de	Score:

Visualização:	-	Gauge	circular	animado	(0-100)	-	Cores:	�	0-30	|	�	31-50	|
�	51-70	|	�	71-100	-	Breakdown	em	4	categorias	com	barras	horizontais

6.	Histórico	Module

Responsabilidade:	Timeline	de	scans	do	usuário,	estatísticas	e	tendências.

GET		/history																→	Lista	scans	do	usuário	(paginado)
GET		/history/stats										→	Estatísticas	gerais	(score	médio,	
total	scans)
GET		/history/trends									→	Evolução	do	score	ao	longo	do	tempo
DELETE	/history/{scan_id}				→	Remove	scan	do	histórico

Funcionalidades:	-	Filtro	por	período,	score	range,	categoria	-	Score	médio
dos	últimos	7/30/90	dias	-	Gráfico	de	tendência	(melhoria	ao	longo	do
tempo)	-	“Seus	piores	hábitos”	(categorias	com	menor	score	médio)	-	Export
CSV/PDF	(premium)

7.	Alternativas	Module

Responsabilidade:	Sugerir	produtos	mais	saudáveis	na	mesma	categoria.

]
}

def	calculate_health_score(product,	ai_analysis):
				score	=	100
				
				#	1.	Nutri-Score	(peso:	25%)
				nutri_penalty	=	{"a":	0,	"b":	5,	"c":	15,	"d":	25,	"e":	35}
				score	-=	nutri_penalty.get(product.nutri_score,	20)	*	0.25
				
				#	2.	NOVA	Group	-	Processamento	(peso:	25%)
				nova_penalty	=	{1:	0,	2:	10,	3:	25,	4:	40}
				score	-=	nova_penalty.get(product.nova_group,	30)	*	0.25
				
				#	3.	Ingredientes	problemáticos	(peso:	25%)
				problematic_count	=	len(ai_analysis.problematic_ingredients)
				score	-=	min(problematic_count	*	8,	40)	*	0.25
				
				#	4.	Perfil	nutricional	(peso:	25%)
				#	Penaliza	excesso	de:	sódio,	açúcar,	gordura	saturada,	gordura	

trans
				#	Bonifica	presença	de:	fibra,	proteína,	vitaminas
				nutrition_score	=	

calculate_nutrition_subscore(product.nutrition)
				score	-=	(100	-	nutrition_score)	*	0.25
				
				return	max(0,	min(100,	round(score)))

GET	/alternatives/{barcode}		→	Alternativas	para	um	produto

Lógica:	1.	Identifica	categoria	do	produto	(ex:	“biscoito	recheado”)	2.	Busca
produtos	da	mesma	categoria	no	DB	com	score	>	produto	atual	3.	Ordena
por:	score	DESC,	popularidade	(nº	de	scans)	DESC	4.	Retorna	top	5
alternativas	com	comparativo

Response:

8.	Perfil	Alimentar	Module

Responsabilidade:	Preferências,	alergias	e	restrições	do	usuário.

GET		/profile/dietary								→	Retorna	perfil	alimentar
PUT		/profile/dietary								→	Atualiza	perfil
GET		/profile/dietary/check/{barcode}	→	Verifica	compatibilidade

Dados	do	perfil:

Impacto	no	fluxo:	-	Análise	IA	recebe	perfil	como	contexto	-	Alertas
personalizados	(“⚠	Contém	glúten	—	você	é	celíaco”)	-	Score	ajustado	por
relevância	pessoal	-	Alternativas	filtradas	por	compatibilidade

9.	Gamificação	Module

Responsabilidade:	Engajamento	via	conquistas,	streaks	e	níveis.

GET		/gamification/profile						→	XP,	nível,	conquistas
GET		/gamification/achievements	→	Lista	todas	as	conquistas
GET		/gamification/leaderboard		→	Ranking	semanal	(premium)

{
		"current_product":	{"name":	"Biscoito	X",	"score":	25},
		"alternatives":	[
				{
						"name":	"Biscoito	Integral	Y",
						"brand":	"Marca	Y",
						"score":	72,
						"score_diff":	"+47",
						"highlights":	["Sem	gordura	trans",	"Rico	em	fibras",	"Menos	

açúcar"],
						"barcode":	"7891234567890"
				}
]
}

{
		"allergies":	["glúten",	"lactose",	"amendoim"],
		"intolerances":	["frutose"],
		"diet":	"vegetariano",		//	null,	vegetariano,	vegano,	low-carb,	

keto,	etc
		"avoid":	["corantes	artificiais",	"glutamato	monossódico"],
		"goals":	["reduzir	açúcar",	"mais	fibra"],
		"conditions":	["diabetes	tipo	2",	"hipertensão"]		//	premium
}

Sistema	de	XP:	|	Ação	|	XP	|	|—|—|	|	Scan	de	produto	|	+10	|	|	Primeiro
scan	do	dia	|	+20	(bônus	streak)	|	|	Escolher	alternativa	saudável	|	+30	|	|
Completar	perfil	alimentar	|	+50	|	|	Streak	de	7	dias	|	+100	|	|
Compartilhar	resultado	|	+15	|

Conquistas	(badges):	-	�	Primeiro	Scan	-	�	Detetive	(10	scans)	-	�	Expert
(100	scans)	-	�	Escolha	Saudável	(5	alternativas	escolhidas)	-	�	Streak
Master	(30	dias	seguidos)	-	�	Analista	(score	médio	>	70	no	mês)

Modelo	de	Dados

Diagrama	ER	Simplificado

┌──────────────┐					┌──────────────┐					┌──────────────┐
│				users					│					│				plans					│					│dietary_profiles│
│──────────────│					│──────────────│					│──────────────│
│	id	(PK)						│────▶│	id	(PK)						│					│	id	(PK)						│
│	email								│					│	name									│					│	user_id	(FK)		│
│	password_hash│					│	price								│					│	allergies[]			│
│	name									│					│	scan_limit			│					│	diet										│
│	plan_id	(FK)	│					│	features{}			│					│	avoid[]							│
│	xp											│					└──────────────┘					│	goals[]							│
│	level								│																										│	conditions[]		│
│	streak_days		│																										└──────────────┘
│	created_at			│
└──────┬───────┘
							│	1:N
							▼
┌──────────────┐					┌──────────────┐
│				scans					│────▶│		products				│
│──────────────│					│──────────────│
│	id	(PK)						│					│	id	(PK)						│
│	user_id	(FK)	│					│	barcode	(UQ)	│
│	product_id			│					│	name									│
│	analysis_id		│					│	brand								│
│	score								│					│	category					│
│	scanned_at			│					│	ingredients		│
│	source							│					│	nutrition	{}	│
└──────────────┘					│	nutri_score		│
																					│	nova_group			│
																					│	images	{}				│
																					│	allergens[]		│
																					│	off_data	{}		│
																					│	updated_at			│
																					└──────┬───────┘
																												│	1:N
																												▼
																					┌──────────────┐					┌──────────────┐
																					│	ingredients		│					│		analyses				│
																					│──────────────│					│──────────────│
																					│	id	(PK)						│					│	id	(PK)						│
																					│	product_id			│					│	product_id			│
																					│	name									│					│	profile_hash	│
																					│	popular_name	│					│	ingredients[]│
																					│	classification│				│	score								│
																					│	explanation		│					│	breakdown	{}	│

																					│	risk_level			│					│	summary						│
																					└──────────────┘					│	alerts[]					│
																																										│	model_version│
																																										│	created_at			│
																																										└──────────────┘

┌──────────────┐					┌──────────────┐
│	alternatives	│					│	achievements	│
│──────────────│					│──────────────│
│	id	(PK)						│					│	id	(PK)						│
│	product_id			│					│	user_id	(FK)	│
│	alt_product_id│				│	badge_type			│
│	score_diff			│					│	unlocked_at		│
│	highlights[]	│					└──────────────┘
└──────────────┘

┌──────────────┐
│	scan_credits	│
│──────────────│
│	id	(PK)						│
│	user_id	(FK)	│
│	date									│
│	used									│
│	limit								│
└──────────────┘

DDL	Principais	Tabelas

--	Usuários
CREATE	TABLE	users	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				email	VARCHAR(255)	UNIQUE	NOT	NULL,
				password_hash	VARCHAR(255)	NOT	NULL,
				name	VARCHAR(100)	NOT	NULL,
				plan_id	INTEGER	REFERENCES	plans(id)	DEFAULT	1,
				xp	INTEGER	DEFAULT	0,
				level	INTEGER	DEFAULT	1,
				streak_days	INTEGER	DEFAULT	0,
				last_scan_date	DATE,
				stripe_customer_id	VARCHAR(255),
				created_at	TIMESTAMPTZ	DEFAULT	NOW(),
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

--	Planos
CREATE	TABLE	plans	(
				id	SERIAL	PRIMARY	KEY,
				name	VARCHAR(50)	NOT	NULL,										--	'free',	'premium'
				price_cents	INTEGER	NOT	NULL,								--	0,	1490	(R$14.90)
				scan_limit_daily	INTEGER	NOT	NULL,			--	3,	-1	(unlimited)
				features	JSONB	DEFAULT	'{}'										--	{"export":	true,	

"history_full":	true}
);

--	Produtos
CREATE	TABLE	products	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				barcode	VARCHAR(20)	UNIQUE	NOT	NULL,
				name	VARCHAR(500),
				brand	VARCHAR(200),

				category	VARCHAR(200),
				ingredients_text	TEXT,
				nutrition	JSONB,												--	{"energy_kcal":	250,	"fat":	12,	

...}
				nutri_score	CHAR(1),								--	A-E
				nova_group	SMALLINT,								--	1-4
				images	JSONB,															--	{"front":	"url",	"ingredients":	

"url"}
				allergens	TEXT[],
				off_data	JSONB,													--	Raw	Open	Food	Facts	response
				scan_count	INTEGER	DEFAULT	0,
				created_at	TIMESTAMPTZ	DEFAULT	NOW(),
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_products_barcode	ON	products(barcode);
CREATE	INDEX	idx_products_category	ON	products(category);

--	Scans
CREATE	TABLE	scans	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				user_id	UUID	REFERENCES	users(id)	ON	DELETE	CASCADE,
				product_id	UUID	REFERENCES	products(id),
				analysis_id	UUID	REFERENCES	analyses(id),
				health_score	SMALLINT,
				scanned_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_scans_user_date	ON	scans(user_id,	scanned_at	DESC);

--	Análises	IA
CREATE	TABLE	analyses	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				product_id	UUID	REFERENCES	products(id),
				profile_hash	VARCHAR(64),				--	SHA-256	do	perfil	alimentar	

(para	cache)
				ingredients_analysis	JSONB,		--	Array	de	análises	por	

ingrediente
				health_score	SMALLINT,
				score_breakdown	JSONB,							--	{"naturalness":	20,	"nutrition":	

40,	...}
				problematic_top3	TEXT[],
				summary	TEXT,
				alerts	JSONB,
				model_version	VARCHAR(50),			--	"gpt-4o-mini-2024-07-18"
				tokens_used	INTEGER,
				created_at	TIMESTAMPTZ	DEFAULT	NOW()
);

CREATE	INDEX	idx_analyses_product_profile	ON	analyses(product_id,	
profile_hash);

--	Perfis	Alimentares
CREATE	TABLE	dietary_profiles	(
				id	UUID	PRIMARY	KEY	DEFAULT	gen_random_uuid(),
				user_id	UUID	UNIQUE	REFERENCES	users(id)	ON	DELETE	CASCADE,
				allergies	TEXT[]	DEFAULT	'{}',
				intolerances	TEXT[]	DEFAULT	'{}',
				diet	VARCHAR(50),
				avoid	TEXT[]	DEFAULT	'{}',

Fluxo	Principal
Usuário	abre	app	(PWA)
								│
								▼
┌─	Tela	de	Scan	──┐
│		navigator.mediaDevices.getUserMedia({video:	{										│
│				facingMode:	"environment"																													│
│		}})																																																				│
│		ZXing-js	detecta	barcode	em	tempo	real																	│
└────────────────────┬────────────────────────────────────┘
																					│	barcode	detectado	(ex:	"7891000100103")
																					▼
										POST	/api/v1/scan
										{	"barcode":	"7891000100103"	}
																					│
																					▼
┌─	Backend	──┐
│																																																									│
│		1.	RATE	LIMIT	CHECK																																				│
│					Redis:	INCR	user:{id}:scans:{date}																	│
│					Se	>=	limite	→	402	(upgrade	para	premium)											│
│																																																									│
│		2.	BUSCA	PRODUTO	(3	camadas)																										│
│					a)	Redis	GET	product:{barcode}																					│
│								→	HIT?	Retorna	cached	(<	5ms)																			│
│					b)	PostgreSQL	SELECT	*	FROM	products	WHERE	barcode=	│
│								→	HIT?	Retorna	+	atualiza	Redis																		│
│					c)	Open	Food	Facts	API	GET	/api/v2/product/{barcode}│
│								→	HIT?	Persiste	no	DB	+	Redis																				│
│								→	MISS?	Retorna	"Produto	não	encontrado"									│
│																																																									│
│		3.	BUSCA	ANÁLISE	(cache	por	produto	+	perfil)									│
│					profile_hash	=	SHA256(user.dietary_profile)									│
│					SELECT	*	FROM	analyses																														│
│							WHERE	product_id	=	X	AND	profile_hash	=	Y									│
│					→	HIT?	Retorna	cached																															│
│					→	MISS?	Chama	GPT-4o-mini																										│
│																																																									│
│		4.	ANÁLISE	IA	(se	cache	miss)																									│
│					OpenAI	Chat	Completion:																													│
│							model:	"gpt-4o-mini"																														│
│							response_format:	{	type:	"json_object"	}										│
│							messages:	[system_prompt,	user_prompt]													│
│					Parse	JSON	→	Persiste	em	analyses																			│
│																																																									│
│		5.	CALCULA	SCORE	(se	não	veio	da	análise)													│
│					Combina:	Nutri-Score	+	NOVA	+	IA	+	Nutrição								│
│																																																									│
│		6.	BUSCA	ALTERNATIVAS																																		│
│					SELECT	FROM	products	WHERE	category	=	X													│
│							AND	health_score	>	current_score																		│
│					ORDER	BY	health_score	DESC,	scan_count	DESC									│

				goals	TEXT[]	DEFAULT	'{}',
				conditions	TEXT[]	DEFAULT	'{}',
				updated_at	TIMESTAMPTZ	DEFAULT	NOW()
);

│					LIMIT	5																																													│
│																																																									│
│		7.	REGISTRA	SCAN																																							│
│					INSERT	INTO	scans	(...)																													│
│					UPDATE	users	SET	xp	=	xp	+	10																						│
│					Verifica	achievements																															│
│																																																									│
│		8.	RETORNA	RESPONSE																																				│
└─────────────────────┬──────────────────────────────────┘
																						│
																						▼
┌─	Frontend	───┐
│																																																									│
│		┌─	Resultado	────────────────────────────────────┐				│
│		│																																																	│				│
│		│		�	Chocolate	ao	Leite	XYZ																					│				│
│		│		Marca	ABC																																						│				│
│		│																																																	│				│
│		│		┌────────────────┐																												│				│
│		│		│				SCORE:	32			│		�	Evitar																	│				│
│		│		│			████░░░░░░			│																												│				│
│		│		└────────────────┘																												│				│
│		│																																																	│				│
│		│		⚠		ALERTAS																																				│				│
│		│		•	Contém	GLÚTEN	(incompatível	com	seu	perfil)	│				│
│		│		•	Alto	teor	de	açúcar	(52g/100g)														│				│
│		│																																																	│				│
│		│		�	INGREDIENTES																															│				│
│		│		•	Açúcar	←	�	Primeiro	ingrediente	=	base				│				│
│		│		•	Gordura	vegetal	hidrogenada	←	�	Trans						│				│
│		│		•	Cacau	←	✅	Natural																										│				│
│		│		•	Lecitina	de	soja	←	⚠		Emulsificante								│				│
│		│		[ver	todos	→]																																		│				│
│		│																																																	│				│
│		│		�	ALTERNATIVAS	MAIS	SAUDÁVEIS																│				│
│		│		•	Chocolate	70%	Marca	Y	—	Score:	68	(+36)					│				│
│		│		•	Chocolate	Orgânico	Z	—	Score:	74	(+42)						│				│
│		│																																																	│				│
│		└───┘				│
└───┘

Sequência	temporal	(target	<	5s)

Etapa
Tempo	(cache

hit)
Tempo	(cache

miss)

Decodificação	barcode
(client) ~200ms ~200ms

Request	→	Backend ~100ms ~100ms

Rate	limit	check	(Redis) ~5ms ~5ms

Busca	produto ~5ms	(Redis) ~800ms	(OFF	API)

Busca/gera	análise	IA ~5ms	(cache) ~2500ms	(GPT)

Calcula	score ~10ms ~10ms

Busca	alternativas ~50ms ~50ms

Registra	scan	+	XP ~20ms ~20ms

Response	→	Frontend ~100ms ~100ms

Render	resultado ~200ms ~200ms

TOTAL ~700ms	✅ ~4000ms	✅

APIs	Externas

Open	Food	Facts

URL:	
https://world.openfoodfacts.org/api/v2/product/{barcode}.json
Custo:	Gratuita,	open	source
Rate	limit:	100	req/min	(ser	gentil)
Cobertura:	~3M	produtos,	boa	cobertura	Brasil
User-Agent	obrigatório:	Aletheia/1.0	(contato@aletheia.app)
Fallback:	Se	produto	não	encontrado,	permitir	cadastro	manual	(v2.0)

OpenAI	GPT-4o-mini

Endpoint:	POST	https://api.openai.com/v1/chat/completions
Modelo:	gpt-4o-mini
Custo	estimado:

Input:	~500	tokens/scan	×	$0.15/1M	=	$0.000075/scan
Output:	~800	tokens/scan	×	$0.60/1M	=	$0.00048/scan
Total:	~$0.00055/scan	≈	R$0.003/scan
10K	scans/dia	=	~R$30/dia

Timeout:	10	segundos
Retry:	3x	com	exponential	backoff	(1s,	2s,	4s)
Fallback:	Análise	baseada	em	regras	(lista	de	ingredientes	conhecidos)

Stripe

Uso:	Assinaturas	(Checkout	+	Customer	Portal)
Webhooks:	invoice.paid,	customer.subscription.updated,	
customer.subscription.deleted
Planos:

Free:	R$0	(3	scans/dia)
Premium:	R$14,90/mês	(ilimitado	+	features	extras)

Google	Cloud	Vision	(fallback	barcode)

Uso:	Apenas	quando	ZXing-js	falha	na	decodificação	client-side
Endpoint:	POST	https://vision.googleapis.com/v1/images:annotate
Custo:	$1.50/1K	imagens	(primeiras	1K/mês	grátis)
Alternativa	free:	QuaggaJS	como	segundo	decoder	client-side

PWA	&	Câmera

Service	Worker	(next-pwa)

Câmera	&	Barcode	Scanner

//	next.config.js
const	withPWA	=	require('next-pwa')({
		dest:	'public',
		register:	true,
		skipWaiting:	true,
		runtimeCaching:	[
				{
						urlPattern:	

/^https:\/\/api\.aletheia\.app\/api\/v1\/products\/.*/,
						handler:	'StaleWhileRevalidate',
						options:	{
								cacheName:	'product-cache',
								expiration:	{	maxEntries:	200,	maxAgeSeconds:	86400	}
						}
				}
]
});

//	hooks/useBarcodeScan.ts
import	{	BrowserMultiFormatReader	}	from	'@zxing/library';

export	function	useBarcodeScan()	{
		const	videoRef	=	useRef<HTMLVideoElement>(null);
		const	readerRef	=	useRef(new	BrowserMultiFormatReader());

		const	startScan	=	async	()	=>	{
				const	stream	=	await	navigator.mediaDevices.getUserMedia({
						video:	{
								facingMode:	'environment',		//	câmera	traseira
								width:	{	ideal:	1280	},
								height:	{	ideal:	720	},
						}
				});
				
				videoRef.current!.srcObject	=	stream;
				
				readerRef.current.decodeFromVideoDevice(
						undefined,		//	usa	device	padrão
						videoRef.current!,
						(result,	error)	=>	{
								if	(result)	{
										//	Vibra	para	feedback
										navigator.vibrate?.(200);
										//	Envia	barcode	para	API
										onBarcodeDetected(result.getText());
								}
						}
);
		};

		return	{	videoRef,	startScan,	stopScan	};
}

Manifest	(PWA)

Monetização	Técnica

Planos

Feature Free Premium	(R$14,90/mês)

Scans	por	dia 3 Ilimitado

Histórico Últimos	7	dias Completo

Análise	IA Básica Detalhada	+	perfil

Alternativas Top	2 Top	5	+	comparativo

Perfil	alimentar Alergias	apenas Completo	(condições)

Export	(CSV/PDF) ❌ ✅

Leaderboard ❌ ✅

Sem	anúncios ❌ ✅

Fluxo	Stripe

Usuário	clica	"Upgrade	Premium"
								│
								▼
POST	/billing/checkout-session
		→	Stripe	Checkout	Session	(mode:	subscription)
		→	Redirect	para	Stripe	hosted	page
								│
								▼
Stripe	processa	pagamento
								│
								▼
Webhook:	invoice.paid
		→	Backend	atualiza	user.plan_id	=	2
		→	Redis:	SET	user:{id}:plan	premium
								│
								▼

{
		"name":	"Aletheia	-	Scanner	de	Rótulos",
		"short_name":	"Aletheia",
		"description":	"Descubra	a	verdade	sobre	o	que	você	come",
		"start_url":	"/",
		"display":	"standalone",
		"orientation":	"portrait",
		"theme_color":	"#16A34A",
		"background_color":	"#FFFFFF",
		"icons":	[
				{	"src":	"/icons/icon-192.png",	"sizes":	"192x192",	"type":	

"image/png"	},
				{	"src":	"/icons/icon-512.png",	"sizes":	"512x512",	"type":	

"image/png"	}
]
}

Usuário	retorna	ao	app	→	plano	ativo

Sistema	de	Créditos

Performance

Metas

Métrica Target Estratégia

Scan	→
resultado

<	5s	(cold)	/	<	1s
(cached) Cache	3	camadas

TTFB	(first
byte) <	200ms Edge	deploy	(Vercel)

LCP <	2.5s SSR	+	lazy	load	imagens

Bundle	size <	150KB	(gzipped)
Tree	shaking,	dynamic
imports

Lighthouse
PWA >	90

Service	worker,	manifest,
HTTPS

API	p95	latency <	500ms	(cached) Redis,	connection	pooling

Uptime 99.9% Health	checks,	auto-restart

Estratégias	de	Cache

┌───┐
│											Cache	Architecture																	│
│																																														│
│		Client	(React	Query)																								│
│				└─	staleTime:	5min																							│
│				└─	Produtos	escaneados	ficam	em	memória			│
│																																														│
│		Service	Worker	(Workbox)																				│
│				└─	StaleWhileRevalidate	para	/products				│
│				└─	CacheFirst	para	imagens	estáticas						│
│																																														│

async	def	check_scan_credits(user_id:	str)	->	bool:
				today	=	date.today().isoformat()
				key	=	f"credits:{user_id}:{today}"
				
				#	Usuário	premium	→	sempre	permitido
				if	await	is_premium(user_id):
								return	True
				
				used	=	await	redis.get(key)
				if	used	and	int(used)	>=	DAILY_FREE_LIMIT:		#	3
								return	False
				
				await	redis.incr(key)
				await	redis.expire(key,	86400)		#	expira	em	24h
				return	True

│		Redis	(Server)																														│
│				└─	product:{barcode}	→	TTL	24h											│
│				└─	analysis:{product_id}:{hash}	→	TTL	7d	│
│				└─	user:{id}:credits:{date}	→	TTL	24h			│
│																																														│
│		PostgreSQL																																		│
│				└─	Source	of	truth,	updated	via	cron						│
│				└─	Produtos	atualizados	a	cada	30	dias			│
└───┘

Otimizações	Backend

Connection	pooling:	SQLAlchemy	async	pool	(min=5,	max=20)
Bulk	operations:	Batch	insert	para	alternativas
Índices:	barcode	(B-tree),	category	(B-tree),	scans	por	user+date
Async	everywhere:	FastAPI	+	httpx	(Open	Food	Facts)	+	asyncpg
Streaming	response:	Para	análises	longas,	usar	SSE	(Server-Sent
Events)

Design	&	UX

Identidade	Visual

Elemento Especificação

Nome Aletheia	(ἀλήθεια	=	verdade)

Logo
Olho	grego	estilizado	(Nazar/Mati)
com	íris	em	forma	de	barcode

Cores	primárias
Verde	#16A34A	(saúde)	+	Branco	
#FFFFFF	(clean)

Cores	secundárias
Cinza	#6B7280	(texto)	+	Verde	claro	
#DCFCE7	(backgrounds)

Cores	de	score
�	#EF4444	·	�	#F97316	·	�	#EAB308	·
�	#22C55E

Tipografia
Inter	(UI)	+	Plus	Jakarta	Sans
(headings)

Ícones Lucide	Icons	(consistente,	leve)

Bordas rounded-xl	(16px),	sombras	suaves

Espaçamento Grid	8px,	padding	generoso

Telas	Principais

1.	SPLASH	/	ONBOARDING
			-	Logo	Aletheia	(olho	grego	animado)
			-	"Descubra	a	verdade	sobre	o	que	você	come"
			-	3	slides:	Scan	→	Entenda	→	Escolha	melhor
			-	CTA:	"Começar"	→	setup	perfil	alimentar

2.	HOME

			-	Header:	logo	+	streak	�	+	XP	bar
			-	Botão	central	grande:	"		Escanear"
			-	Últimos	scans	(horizontal	scroll)
			-	Score	médio	da	semana	(mini	gauge)
			-	Tip	do	dia	(IA)

3.	SCANNER
			-	Câmera	fullscreen	com	overlay
			-	Guia	visual:	"Aponte	para	o	código	de	barras"
			-	Auto-detect	+	vibração
			-	Loading:	animação	do	olho	"analisando"

4.	RESULTADO
			-	Score	gauge	animado	(destaque	principal)
			-	Alertas	personalizados	(cards	vermelhos/amarelos)
			-	Lista	de	ingredientes	(expandível,	com	ícones)
			-	Alternativas	(cards	horizontais)
			-	Botões:	Salvar	|	Compartilhar	|	Escanear	outro

5.	HISTÓRICO
			-	Timeline	vertical	com	mini	scores
			-	Filtros:	período,	categoria,	score
			-	Gráfico	de	tendência	(line	chart)

6.	PERFIL
			-	Dados	pessoais
			-	Perfil	alimentar	(alergias,	dieta,	goals)
			-	Plano	(free/premium)
			-	Gamificação	(nível,	badges,	streak)
			-	Configurações

Micro-interações

Scan	detectado:	Vibração	+	flash	verde	+	som	sutil
Score	reveal:	Animação	circular	de	0	até	valor	final	(1.5s)
Ingrediente	tap:	Expande	com	animação	suave	(Framer	Motion)
Achievement	unlocked:	Toast	animado	com	confetti
Pull	to	refresh:	Animação	do	olho	grego	piscando

Roadmap

MVP	—	Semanas	1-3

Semana	1:	Infraestrutura	+	Scanner	-	[]	Setup	monorepo	(turborepo	ou
pasta	separada)	-	[]	Backend:	FastAPI	boilerplate,	auth	JWT,	migrations	-	[]
Frontend:	Next.js	14,	PWA	setup,	layout	base	-	[]	Scanner:	câmera	+	ZXing-
js	funcionando	-	[]	Integração	Open	Food	Facts	(busca	básica)

Semana	2:	IA	+	Core	Features	-	[]	Análise	IA	com	GPT-4o-mini	-	[]	Score
de	saúde	(algoritmo	v1)	-	[]	Tela	de	resultado	completa	-	[]	Cache	Redis
para	produtos	+	análises	-	[]	Histórico	básico	(lista	de	scans)

Semana	3:	Polish	+	Deploy	-	[]	Design	system	(cores,	tipografia,
componentes)	-	[]	Rate	limiting	(3	scans/dia	free)	-	[]	Alternativas	básicas	-
[]	Error	handling	e	loading	states	-	[]	Deploy:	Vercel	(front)	+	Railway
(back)	-	[]	Testes	E2E	dos	fluxos	principais

Entregáveis	MVP:	-	PWA	funcional	no	celular	-	Scan	→	resultado	com	score
+	ingredientes	explicados	-	3	scans	grátis	por	dia	-	Histórico	dos	últimos	7
dias

v1.0	—	Semanas	4-6

Perfil	alimentar	completo
Alertas	personalizados	baseados	no	perfil
Stripe	integration	(premium)
Gamificação	(XP,	streaks,	badges)
Onboarding	flow
Push	notifications	(Web	Push	API)
Offline	mode	(scans	salvos	localmente)

v2.0	—	Semanas	7-10

Compartilhar	resultado	(social	cards)
Comparar	2	produtos	lado	a	lado
Leaderboard	semanal
OCR	de	ingredientes	(foto	da	lista	quando	sem	barcode)
Cadastro	de	produtos	por	usuários
API	pública	para	desenvolvedores
Internacionalização	(PT-BR,	EN,	ES)

v3.0	—	Futuro

App	nativo	(React	Native	ou	Capacitor)
Integração	com	supermercados	(preços)
Scan	de	cardápios	de	restaurantes
Diário	alimentar	com	score	diário
Recomendações	de	receitas	saudáveis
Integração	com	Apple	Health	/	Google	Fit

Estrutura	de	Diretórios
aletheia/
├──	backend/
│			├──	app/
│			│			├──	__init__.py
│			│			├──	main.py																	#	FastAPI	app	factory
│			│			├──	config.py															#	Settings	(pydantic-settings)
│			│			├──	database.py													#	SQLAlchemy	async	engine
│			│			├──	dependencies.py									#	Shared	deps	(get_db,	
get_current_user)
│			│			├──	models/																	#	SQLAlchemy	models

│			│			│			├──	user.py
│			│			│			├──	product.py
│			│			│			├──	scan.py
│			│			│			├──	analysis.py
│			│			│			├──	dietary_profile.py
│			│			│			└──	plan.py
│			│			├──	schemas/																#	Pydantic	schemas
│			│			│			├──	user.py
│			│			│			├──	product.py
│			│			│			├──	scan.py
│			│			│			└──	analysis.py
│			│			├──	routers/																#	API	routes
│			│			│			├──	auth.py
│			│			│			├──	scan.py
│			│			│			├──	products.py
│			│			│			├──	analysis.py
│			│			│			├──	history.py
│			│			│			├──	alternatives.py
│			│			│			├──	profile.py
│			│			│			├──	gamification.py
│			│			│			└──	billing.py
│			│			├──	services/															#	Business	logic
│			│			│			├──	auth_service.py
│			│			│			├──	scan_service.py
│			│			│			├──	product_service.py
│			│			│			├──	ai_service.py
│			│			│			├──	score_service.py
│			│			│			├──	alternatives_service.py
│			│			│			├──	credits_service.py
│			│			│			└──	gamification_service.py
│			│			├──	integrations/											#	External	APIs
│			│			│			├──	open_food_facts.py
│			│			│			├──	openai_client.py
│			│			│			└──	stripe_client.py
│			│			└──	utils/
│			│							├──	cache.py
│			│							├──	security.py
│			│							└──	prompts.py
│			├──	alembic/																				#	Migrations
│			├──	tests/
│			├──	Dockerfile
│			├──	requirements.txt
│			└──	pyproject.toml
│
├──	frontend/
│			├──	src/
│			│			├──	app/																				#	Next.js	App	Router
│			│			│			├──	layout.tsx
│			│			│			├──	page.tsx												#	Home
│			│			│			├──	scan/page.tsx							#	Scanner
│			│			│			├──	result/[id]/page.tsx
│			│			│			├──	history/page.tsx
│			│			│			├──	profile/page.tsx
│			│			│			└──	premium/page.tsx
│			│			├──	components/
│			│			│			├──	ui/																	#	Design	system
│			│			│			├──	scanner/
│			│			│			│			├──	CameraView.tsx
│			│			│			│			└──	BarcodeOverlay.tsx
│			│			│			├──	result/

│			│			│			│			├──	ScoreGauge.tsx
│			│			│			│			├──	IngredientList.tsx
│			│			│			│			├──	AlertCards.tsx
│			│			│			│			└──	AlternativeCards.tsx
│			│			│			└──	gamification/
│			│			│							├──	XPBar.tsx
│			│			│							└──	BadgeGrid.tsx
│			│			├──	hooks/
│			│			│			├──	useBarcodeScan.ts
│			│			│			├──	useAuth.ts
│			│			│			└──	useScan.ts
│			│			├──	lib/
│			│			│			├──	api.ts														#	Axios	instance
│			│			│			└──	utils.ts
│			│			└──	stores/
│			│							├──	authStore.ts								#	Zustand
│			│							└──	scanStore.ts
│			├──	public/
│			│			├──	manifest.json
│			│			├──	sw.js
│			│			└──	icons/
│			├──	next.config.js
│			├──	tailwind.config.ts
│			└──	package.json
│
├──	docs/
│			├──	ARQUITETURA-TECNICA.md						#	Este	arquivo
│			├──	API.md																						#	Documentação	da	API
│			└──	DEPLOY.md																			#	Guia	de	deploy
│
├──	docker-compose.yml														#	PostgreSQL	+	Redis	+	Backend
├──	.env.example
└──	README.md

Estimativa	de	Custos	(10K	usuários	ativos)

Serviço Custo/mês

Vercel	(frontend) Free	(hobby)	ou	$20	(pro)

Railway	(backend	+	DB	+	Redis) ~$20-40

OpenAI	GPT-4o-mini	(~30K	scans/mês) ~R$90	(~$17)

Stripe	(2.5%	+	fees) Variável

Domínio ~R$40/ano

Total	estimado ~R$250-400/mês

Break-even:	~25-30	assinantes	premium	(R$14,90	×	30	=	R$447)

“Aletheia	—	porque	você	merece	saber	a	verdade	sobre	o	que	come.”	
	

