I ALETHEIA — Arquitetura Técnica

Aletheia (aAjfela) — “verdade” em grego. Scanner de rétulos
alimentares com IA que revela a verdade sobre o que vocé come.

{ Indice

Viséo Geral

Stack Tecnoldgica
Arquitetura de Sistema
Modulos

Modelo de Dados
Fluxo Principal

APIs Externas

PWA & Camera
Monetizacdo Técnica
Performance

. Design & UX

. Roadmap
. Estrutura de Diretdrios

© X NPT

[
w N R o

Visao Geral

O usudrio aponta a cAmera do celular para o cédigo de barras de um
alimento. Em menos de 5 segundos, recebe:

e Explicacdo simples de cada ingrediente (“como se tivesse 10 anos™)

e Score de saude de 0 a 100 (com breakdown visual)

e Alertas sobre ingredientes problematicos (corantes, conservantes,
excesso de s6dio)

e Alternativas mais saudaveis disponiveis na mesma categoria

¢ Compatibilidade com seu perfil alimentar (alergias, dietas, restri¢ées)

Stack Tecnologica
Backend
Componente Tecnologia Justificativa
Async nativo, tipagem
Framework FastAPI (Python 3.12) forte, docs

automaticas

Migrations

file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#vis%C3%A3o-geral
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#stack-tecnol%C3%B3gica
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#arquitetura-de-sistema
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#m%C3%B3dulos
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#modelo-de-dados
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#fluxo-principal
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#apis-externas
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#pwa--c%C3%A2mera
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#monetiza%C3%A7%C3%A3o-t%C3%A9cnica
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#performance
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#design--ux
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#roadmap
file:///home/kernelpanic/projetos_jarvis/aletheia/docs/toPdfViaTempFile504697-0.html#estrutura-de-diret%C3%B3rios

ORM SQLAIchemy 2.0 + versionadas, async
Alembic support
JSONB para dados
Banco principal PostgreSQL 16 flexiveis, full-text
search
Cache de produtos,
Cache Redis 7 . p ~
rate limiting, sessdes
Andlises IA em
Task queue Celery + Redis broker
q Yy background
JWT (access + refresh Stateless, rotacdo de
Auth
tokens) tokens
. . . Workers async para
Servidor Uvicorn + Gunicorn A .
alta concorréncia
Frontend
Componente Tecnologia Justificativa
Framework Next.js 14 (App Router) SSR, RSC, PWA-ready
Design system
uI Tailwind CSS + Radix UI &1 5y ,
consistente, acessivel
Leve, simples, sem
Estado Zustand . P
boilerplate
, , , Scan direto no
R navigator.mediaDevices
Camera/Barcode o browser, sem SDK
+ ZXing-js .
nativo
Axios + React Ouer Cache client-side,
HTTP Query retry, optimistic
(TanStack)
updates
Offline support,
PWA next-pwa (Workbox) . PP
install prompt
. . . Score gauge,
Animacoes Framer Motion .
transicdes suaves
Infra
Componente Tecnologia
Deploy backend Railway / Fly.io (ou VPS com Docker)
Deploy frontend Vercel
CI/CD GitHub Actions
Monitoramento Sentry (erros) + Uptime Kuma (status)
Logs Estruturados com structlog — stdout

Storage

S3-compatible (imagens de produtos)

Arquitetura de Sistema

CLIENTE (PWA) |
Next.js 14 - Tailwind - ZXing-js - Service Worker |

I
| HTTPS
v

API GATEWAY |
FastAPI - Uvicorn - JWT |

|
|
|
|
| 1T 1 1 |
| | Auth | | Scanner | | Produtos | |
| | Module | | Module | | Module | |
| Il I I |
| 1T 1 1 |
	Andlise		Score		Alternativ.	
	1IA		Sadde		Module	
L o I						
] 1 1						
	Histérico		Perfil		Gamificacé&o	
	Module		Alimentar		Module	
	Il I					
I						
T T						
I v 1T v 1T A 1						
Postgres		Redis		Celery		
16		7		wWorkers		
1 I I I						
T						
T v 1						
APIs Externas						
» Open Food Facts						
» OpenAI GPT-4o0-mini						
+ Stripe						
L I
Modulos
1. Auth Module

Responsabilidade: Registro, login, gerenciamento de sessao.

POST /auth/register - Cria conta (email + senha ou OAuth)
POST /auth/login - Retorna access token + refresh token
POST /auth/refresh - Renova access token

POST /auth/forgot-password -» Envia email de reset

POST /auth/reset-password - Aplica nova senha

GET /auth/me - Retorna perfil do usudrio logado
DELETE /auth/me - Deleta conta (LGPD)

Senhas: berypt (cost factor 12)

Tokens: JWT RS256, access_token (15min), refresh_token (30 dias)
OAuth: Google e Apple Sign-In (futuro)

Rate limit: 5 tentativas de login por minuto por IP

2. Scanner Module

Responsabilidade: Decodificacdo de barcode e orquestragdo do fluxo de
scan.

POST /scan - Recebe barcode, orquestra busca +
analise
GET /scan/{scan_id} - Retorna resultado completo de um scan

Fluxo interno: 1. Recebe barcode (EAN-13/UPC-A) do frontend 2. Verifica

rate limit do usudrio (créditos) 3. Busca produto no cache Redis — DB local
— Open Food Facts 4. Se produto novo, persiste no DB 5. Dispara andlise IA
(sync se cache hit, async se primeira vez) 6. Retorna resultado consolidado

Barcode no frontend: - ZXing-js para decodificacdo client-side - Fallback:
envio de imagem para Google Cloud Vision API (barcode detection) -
Suporte: EAN-13, EAN-8, UPC-A, UPC-E

3. Produtos Module

Responsabilidade: CRUD de produtos, cache e sincronizagdo com Open
Food Facts.

GET /products/{barcode} - Busca produto por barcode
GET /products/{barcode}/nutrition - Dados nutricionais detalhados
POST /products/report - Usudrio reporta dados
incorretos

Estratégia de cache (3 camadas):

Camada TTL Detalhes
Hot cache, produtos escaneados
Redis 24h P
recentemente
PostgreSQL 30 dias Cache persistente, atualizado via cron
Open Food Sob
P Source of truth, fallback
Facts demanda

Dados armazenados do produto: - Nome, marca, categoria - Lista de
ingredientes (texto original) - Tabela nutricional (por 100g e por por¢ao) -
Nutri-Score (A-E) quando disponivel - NOVA group (1-4, grau de
processamento) - Imagens (frente, ingredientes, nutricional) - Alérgenos
declarados

4. Analise IA Module

Responsabilidade: Andlise inteligente de ingredientes via GPT-4o0-mini.

POST /analysis/ingredients - Analisa lista de ingredientes
GET /analysis/{analysis id} - Retorna analise completa

Prompt Engineering:

SYSTEM_PROMPT = """

Vocé é um nutricionista especialista que explica ingredientes
alimentares de forma simples, como se falasse com alguém sem
formacdo técnica.

Para cada ingrediente, fornega:

1. Nome popular (se diferente do técnico)

2. 0 que é e para que serve no produto (1-2 frases)
3. Classificagao: « Natural | a Atencdo | [J Evitar
4. Motivo da classificacdo (1 frase)

Ao final, gere:

- Score de salde (0-100) com justificativa

- Top 3 ingredientes problemdticos (se houver)
- Resumo em 1 pardgrafo para leigo

USER_PROMPT TEMPLATE = """

Produto: {product name}

Marca: {brand}

Categoria: {category}

Ingredientes: {ingredients text}

Tabela nutricional (por 100g): {nutrition table}

Perfil do usudrio: {user profile} # alergias, restrigdes

Analise este produto.

Otimizacdes: - Cache de anélises por hash(ingredientes + perfil_usuario) -
GPT-40-mini para custo baixo (~$0.15/1M input tokens) - Structured output
(JSON mode) para parsing confidvel - Timeout: 10s, retry com exponential

backoff - Fallback: andlise baseada em regras se IA falhar

Response format (JSON):
{
"ingredients": [
{
"name": "AclUcar invertido",
"popular name": "Acucar liquido",
"explanation": "E aclcar comum dissolvido e processado para
ficar liquido. Usado para adocar e dar textura.",
"classification": "warning",
"reason": "Alto indice glicémico, contribui para picos de
aclcar no sangue."
}

1,

"health score": 35,

"score breakdown": {
"naturalness": 20,
"nutrition": 40,
"processing": 30,
"additives": 50

I
"problematic_top3": ["AcUcar invertido", "Gordura vegetal
hidrogenada", "Corante caramelo IV"],
"summary": "Este produto é ultraprocessado com alto teor de
aclcar...",
"alerts": [
{"type": "allergen", "message": "Contém gliten (incompativel com

seu perfil)"}

5. Score de Saude Module

Responsabilidade: Calculo do score 0-100, combinando dados nutricionais
+ analise IA.

Algoritmo de Score:

def calculate health score(product, ai analysis):
score = 100

1. Nutri-Score (peso: 25%)
nutri penalty = {"a": 0, "b": 5, "c": 15, "d": 25, "e": 35}
score -= nutri penalty.get(product.nutri score, 20) * 0.25

2. NOVA Group - Processamento (peso: 25%)
nova penalty = {1: 0, 2: 10, 3: 25, 4: 40}
score -= nova _penalty.get(product.nova group, 30) * 0.25

3. Ingredientes problematicos (peso: 25%)
problematic count = len(ai analysis.problematic ingredients)
score -= min(problematic count * 8, 40) * 0.25

4. Perfil nutricional (peso: 25%)

Penaliza excesso de: sdédio, acucar, gordura saturada, gordura
trans

Bonifica presenca de: fibra, proteina, vitaminas

nutrition score =
calculate nutrition subscore(product.nutrition)

score -= (100 - nutrition_score) * 0.25

return max(0, min(100, round(score)))

Visualizacao: - Gauge circular animado (0-100) - Cores: 0 0-30 | @ 31-50 |
51-70 | © 71-100 - Breakdown em 4 categorias com barras horizontais

6. Historico Module

Responsabilidade: Timeline de scans do usudrio, estatisticas e tendéncias.

{

GET /history Lista scans do usuario (paginado)

GET /history/stats - Estatisticas gerais (score médio,
total scans)

GET /history/trends - Evolucao do score ao longo do tempo
DELETE /history/{scan_id} - Remove scan do histérico

Funcionalidades: - Filtro por periodo, score range, categoria - Score médio
dos ultimos 7/30/90 dias - Grafico de tendéncia (melhoria ao longo do
tempo) - “Seus piores habitos” (categorias com menor score médio) - Export
CSV/PDF (premium)

7. Alternativas Module

Responsabilidade: Sugerir produtos mais saudaveis na mesma categoria.

GET /alternatives/{barcode} - Alternativas para um produto

Légica: 1. Identifica categoria do produto (ex: “biscoito recheado”) 2. Busca
produtos da mesma categoria no DB com score > produto atual 3. Ordena
por: score DESC, popularidade (n° de scans) DESC 4. Retorna top 5
alternativas com comparativo

Response:
{
"current product": {"name": "Biscoito X", "score": 25},
"alternatives": [
{
"name": "Biscoito Integral Y",
"brand": "Marca Y",
"score": 72,
"score diff": "+47",
"highlights": ["Sem gordura trans", "Rico em fibras", "Menos
acucar"],
"barcode": "7891234567890"
}
1
}

8. Perfil Alimentar Module

Responsabilidade: Preferéncias, alergias e restri¢cdes do usudrio.

GET /profile/dietary - Retorna perfil alimentar
PUT /profile/dietary - Atualiza perfil
GET /profile/dietary/check/{barcode} - Verifica compatibilidade

Dados do perfil:
{
"allergies": ["gluten", "lactose", "amendoim"],
"intolerances": ["frutose"],
"diet": "vegetariano", // null, vegetariano, vegano, low-carb,
keto, etc
"avoid": ["corantes artificiais", "glutamato monossédico"],
"goals": ["reduzir acuUcar", "mais fibra"],
"conditions": ["diabetes tipo 2", "hipertensao"] // premium
}

Impacto no fluxo: - Andlise IA recebe perfil como contexto - Alertas
personalizados (“A Contém gluten — vocé é celiaco”) - Score ajustado por
relevancia pessoal - Alternativas filtradas por compatibilidade

9. Gamificacao Module

Responsabilidade: Engajamento via conquistas, streaks e niveis.

GET /gamification/profile - XP, nivel, conquistas
GET /gamification/achievements - Lista todas as conquistas
GET /gamification/leaderboard - Ranking semanal (premium)

Sistema de XP: | Acdo | XP | |—|—| | Scan de produto | +10 | | Primeiro
scan do dia | +20 (bonus streak) | | Escolher alternativa saudéavel | +30 | |
Completar perfil alimentar | +50 | | Streak de 7 dias | +100 | |
Compartilhar resultado | +15 |

Conquistas (badges): - 0 Primeiro Scan - Q Detetive (10 scans) - € Expert
(100 scans) - 0 Escolha Saudével (5 alternativas escolhidas) - # Streak
Master (30 dias seguidos) - lul Analista (score médio > 70 no més)

Modelo de Dados

Diagrama ER Simplificado

users		plans		dietary profiles
				———
id (PK)	—	id (PK)		id (PK)
email		name		user id (FK)
password hash		price		allergies[]
name		scan_limit		diet
plan_id (FK)		features{}		avoidl]
xp	: :	goals[]		
level		conditions[]		
streak days	L '			
created at				
1:N				
v				
scans	—	products		
id (PK)		id (PK)		
user id (FK)		barcode (UQ)		
product id		name		
analysis id		brand		
score		category		
scanned at		ingredients		
source		nutrition {}		
' '	nutri_score			
nova group				
images {}				
allergens[]				
off data {}				
updated at				
T				
1:N				
v				
]		
ingredients		analyses		
————				
id (PK)		id (PK)		
product id		product id		
name		profile hash		
popular name		ingredients[]]		
classification		score		

explanation | breakdown {}

| risk level | summary
alerts[]

|
|
model version]|
|
|

created at

[| [1
alternatives		achievements
id (PK)		id (PK)
product id		user id (FK)
alt product id		badge type
score diff		unlocked at
highlights[]	: '	
L		
[
scan credits		
id (PK)		
user id (FK)		
date		
used		
limit		
L |
DDL Principais Tabelas

-- Usuarios

CREATE TABLE users (

)i

id UUID PRIMARY KEY DEFAULT gen random uuid(),
email VARCHAR(255) UNIQUE NOT NULL,

password hash VARCHAR(255) NOT NULL,

name VARCHAR(100) NOT NULL,

plan_id INTEGER REFERENCES plans(id) DEFAULT 1,
xp INTEGER DEFAULT 0,

level INTEGER DEFAULT 1,

streak days INTEGER DEFAULT 0,

last scan date DATE,

stripe customer id VARCHAR(255),

created_at TIMESTAMPTZ DEFAULT NOW(),
updated_at TIMESTAMPTZ DEFAULT NOW()

-- Planos
CREATE TABLE plans (

"history ful
)

id SERIAL PRIMARY KEY,

name VARCHAR(50) NOT NULL, -- 'free', 'premium'
price cents INTEGER NOT NULL, -- 0, 1490 (R$14.90)
scan_limit daily INTEGER NOT NULL, -- 3, -1 (unlimited)
features JSONB DEFAULT '{}' -- {"export": true,

1": true}

-- Produtos
CREATE TABLE products (

id UUID PRIMARY KEY DEFAULT gen random uuid(),
barcode VARCHAR(20) UNIQUE NOT NULL,

name VARCHAR(500),

brand VARCHAR(200),

category VARCHAR(200),
ingredients text TEXT,

nutrition JSONB, -- {"energy kcal": 250, "fat": 12,
L}
nutri score CHAR(1), -- A-E
nova_group SMALLINT, -- 1-4
images JSONB, -- {"front": "url", "ingredients":
"url"}
allergens TEXTI[],
off data JSONB, -- Raw Open Food Facts response
scan_count INTEGER DEFAULT O,
created at TIMESTAMPTZ DEFAULT NOW(),
updated at TIMESTAMPTZ DEFAULT NOW()
);
CREATE INDEX idx products barcode ON products(barcode);
CREATE INDEX idx products category ON products(category);
-- Scans
CREATE TABLE scans (
id UUID PRIMARY KEY DEFAULT gen_ random uuid(),
user _id UUID REFERENCES users(id) ON DELETE CASCADE,
product id UUID REFERENCES products(id),
analysis_id UUID REFERENCES analyses(id),
health score SMALLINT,
scanned at TIMESTAMPTZ DEFAULT NOW()
)5
CREATE INDEX idx scans user date ON scans(user _id, scanned at DESC);
-- Andlises IA
CREATE TABLE analyses (
id UUID PRIMARY KEY DEFAULT gen_random uuid(),
product _id UUID REFERENCES products(id),
profile hash VARCHAR(64), -- SHA-256 do perfil alimentar
(para cache)
ingredients analysis JSONB, -- Array de analises por
ingrediente
health score SMALLINT,
score_breakdown JSONB, -- {"naturalness": 20, "nutrition":
40, ...}

problematic top3 TEXT[],
summary TEXT,
alerts JSONB,
model version VARCHAR(50), -- "gpt-40-mini-2024-07-18"
tokens used INTEGER,
created at TIMESTAMPTZ DEFAULT NOW()
)

CREATE INDEX idx_analyses product profile ON analyses(product id,
profile hash);

-- Perfis Alimentares
CREATE TABLE dietary profiles (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
user_id UUID UNIQUE REFERENCES users(id) ON DELETE CASCADE,
allergies TEXT[] DEFAULT '{}',
intolerances TEXT[] DEFAULT '{}',
diet VARCHAR(50),
avoid TEXT[] DEFAULT '{}',

goals TEXT[] DEFAULT '{}',

conditions TEXT[] DEFAULT '{}',

updated at TIMESTAMPTZ DEFAULT NOW()
);

Fluxo Principal

Usuario abre app (PWA)
|
v
— Tela de Scan
navigator.mediaDevices.getUserMedia({video: { |
facingMode: "environment" |

|
|
I) |
|

ZXing-js detecta barcode em tempo real |

T
| barcode detectado (ex: "7891000100103")
v
POST /api/vl/scan
{ "barcode": "7891000100103" }
|
v
Backend 1

1. RATE LIMIT CHECK |
Redis: INCR user:{id}:scans:{date} |
Se >= limite - 402 (upgrade para premium) |

2. BUSCA PRODUTO (3 camadas) |
a) Redis GET product:{barcode} |
- HIT? Retorna cached (< 5ms) |

b) PostgreSQL SELECT * FROM products WHERE barcode= |

- HIT? Retorna + atualiza Redis |

c) Open Food Facts API GET /api/v2/product/{barcode}|

- HIT? Persiste no DB + Redis |

- MISS? Retorna "Produto ndo encontrado" |

|

3. BUSCA ANALISE (cache por produto + perfil) |
profile hash = SHA256(user.dietary profile) |
SELECT * FROM analyses |

WHERE product id = X AND profile hash =Y |
- HIT? Retorna cached |
- MISS? Chama GPT-40-mini |

4. ANALISE IA (se cache miss) |
OpenAl Chat Completion: |
model: "gpt-4o0-mini" |
response_format: { type: "json object" } |
messages: [system prompt, user prompt] |
Parse JSON - Persiste em analyses |

5. CALCULA SCORE (se ndo veio da andlise) |
Combina: Nutri-Score + NOVA + IA + Nutricéo |

|
6. BUSCA ALTERNATIVAS |
SELECT FROM products WHERE category = X |
AND health score > current _score |
ORDER BY health score DESC, scan_count DESC |

—
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LIMIT 5

. REGISTRA SCAN

INSERT INTO scans (...)
UPDATE users SET xp = xp + 10
Verifica achievements

8. RETORNA RESPONSE

v

Frontend

— Resultado

Marca ABC

00 Chocolate ao Leite XYZ

SCO
[

0 Evitar

ALERTAS

B

< INGREDIENTES

[ver todos -]

e Acglcar « [] Primeiro ingrediente = base
e Gordura vegetal hidrogenada « [] Trans
e Cacau « « Natural

e Lecitina de soja « a Emulsificante

[0 ALTERNATIVAS MAIS SAUDAVEIS
¢ Chocolate 70% Marca Y — Score: 68 (+36)
e Chocolate Organico Z — Score: 74 (+42)

Contém GLUTEN (incompativel com seu perfil) | |
Alto teor de aclcar (52g/100g)

—
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Sequéncia temporal (target < 5s)

Tempo (cache

Tempo (cache

Etapa hit) miss)
]()C;i;cgﬁcagéo barcode ~200ms ~200ms
Request — Backend ~100ms ~100ms
Rate limit check (Redis) ~5ms ~5ms
Busca produto ~5ms (Redis) ~800ms (OFF API)

Busca/gera analise IA
Calcula score
Busca alternativas

Registra scan + XP

~5ms (cache)
~10ms
~50ms

~20ms

~2500ms (GPT)
~10ms
~50ms

~20ms

Response — Frontend ~100ms ~100ms

Render resultado ~200ms ~200ms
TOTAL ~700ms ~4000ms

APIs Externas

Open Food Facts

URL:
https://world.openfoodfacts.org/api/v2/product/{barcode}.json
Custo: Gratuita, open source

Rate limit: 100 req/min (ser gentil)

Cobertura: ~3M produtos, boa cobertura Brasil

User-Agent obrigatorio: Aletheia/1.0 (contato@aletheia.app)
Fallback: Se produto ndo encontrado, permitir cadastro manual (v2.0)

OpenAl GPT-40-mini

Endpoint: POST https://api.openai.com/v1l/chat/completions
Modelo: gpt-40-mini
Custo estimado:
o Input: ~500 tokens/scan x $0.15/1M = $0.000075/scan
o OQutput: ~800 tokens/scan x $0.60/1M = $0.00048/scan
o Total: ~$0.00055/scan = R$0.003/scan
o 10K scans/dia = ~R$30/dia
Timeout: 10 segundos

e Retry: 3x com exponential backoff (1s, 2s, 4s)
e Fallback: Analise baseada em regras (lista de ingredientes conhecidos)

Stripe

Uso: Assinaturas (Checkout + Customer Portal)
Webhooks: invoice.paid, customer.subscription.updated,
customer.subscription.deleted
Planos:
o Free: R$0 (3 scans/dia)
o Premium: R$14,90/més (ilimitado + features extras)

Google Cloud Vision (fallback barcode)

Uso: Apenas quando ZXing-js falha na decodificacdo client-side
Endpoint: POST https://vision.googleapis.com/v1l/images:annotate
Custo: $1.50/1K imagens (primeiras 1K/més gratis)

Alternativa free: Quagga]JS como segundo decoder client-side

PWA & Camera

Service Worker (next-pwa)

// next.config.js
const withPWA = require('next-pwa') ({
dest: 'public',
register: true,
skipWaiting: true,
runtimeCaching: [
{
urlPattern:
/~https:\/\/api\.aletheia\.app\/api\/v1\/products\/.*/,
handler: 'StaleWhileRevalidate',
options: {
cacheName: 'product-cache',
expiration: { maxEntries: 200, maxAgeSeconds: 86400 }
}
}
1
1)

Camera & Barcode Scanner

// hooks/useBarcodeScan.ts
import { BrowserMultiFormatReader } from '@zxing/library’;

export function useBarcodeScan() {
const videoRef = useRef<HTMLVideoElement>(null);
const readerRef = useRef(new BrowserMultiFormatReader());

const startScan = async () => {
const stream = await navigator.mediaDevices.getUserMedia({
video: {
facingMode: 'environment', // camera traseira
width: { ideal: 1280 },
height: { ideal: 720 },
}
1)

videoRef.current!.srcObject = stream;

readerRef.current.decodeFromVideoDevice(

undefined, // usa device padréo

videoRef.current!,

(result, error) => {

if (result) {

// Vibra para feedback
navigator.vibrate?.(200);
// Envia barcode para API
onBarcodeDetected(result.getText());

return { videoRef, startScan, stopScan };

}

Manifest (PWA)
{
"name": "Aletheia - Scanner de Rdtulos",
"short name": "Aletheia",
"description": "Descubra a verdade sobre o que vocé come",
"start url": "/",
"display": "standalone",
"orientation": "portrait",
"theme color": "#16A34A",
"background color": "#FFFFFF",
"icons": [
{ "src": "/icons/icon-192.png", "sizes": "192x192", "type":
"image/png" },
{ "src": "/icons/icon-512.png", "sizes": "512x512", "type":

"image/png" }

1
b
Monetizacao Técnica
Planos
Feature Free Premium (R$14,90/més)

Scans por dia 3 Nimitado

Histoérico Ultimos 7 dias ~ Completo

Anadlise TA Bésica Detalhada + perfil

Alternativas Top 2 Top 5 + comparativo

Perfil alimentar Alergias apenas Completo (condicdes)

Export (CSV/PDF) X 4

Leaderboard X 4

Sem anuncios X %

Fluxo Stripe

Usudrio clica "Upgrade Premium"

v

POST /billing/checkout-session

- Stripe

Checkout Session (mode: subscription)

- Redirect para Stripe hosted page

v

Stripe processa pagamento

v

Webhook: invoice.paid
- Backend atualiza user.plan_id = 2

- Redis:

v

SET user:{id}:plan premium

Usuario retorna ao app - plano ativo

Sistema de Créditos

async def check scan credits(user_id: str) -> bool:
today = date.today().isoformat()
key = f"credits:{user id}:{today}"

Usudrio premium - sempre permitido
if await is premium(user_id):
return True

used = await redis.get(key)
if used and int(used) >= DAILY FREE LIMIT: # 3
return False

await redis.incr(key)
await redis.expire(key, 86400) # expira em 24h
return True

Performance
Metas
Métrica Target Estratégia
Scan — <5s(cold) /< 1s
resultado (cached) Cache 3 camadas
TTFB (first
byte) < 200ms Edge deploy (Vercel)
LCP <2.5s SSR + lazy load imagens
Tree shaking, dynamic
Bundle size < 150KB (gzipped) . &% !
imports
Lighthouse > 90 Service worker, manifest,
PWA HTTPS
API p95 latency < 500ms (cached) Redis, connection pooling
Uptime 99.9% Health checks, auto-restart

Estratégias de Cache

Cache Architecture |

Client (React Query) |
- staleTime: 5min |
- Produtos escaneados ficam em meméria

Service Worker (Workbox)
L StaleWhileRevalidate para /products
L CacheFirst para imagens estaticas

Redis (Server)
- product:{barcode} - TTL 24h
- analysis:{product_id}:{hash
- user:{id}:credits:{date} -

PostgreSQL
- Source of truth, updated vi
- Produtos atualizados a cada

} - TTL 7d |
TTL 24h |

a cron |

30 dias |
|

Otimizacodes Backend

Connection pooling: SQLAlchemy

Indices: barcode (B-tree), category

Events)

async pool (min=5, max=20)

Bulk operations: Batch insert para alternativas

(B-tree), scans por user+date

Async everywhere: FastAPI + httpx (Open Food Facts) + asyncpg
Streaming response: Para analises longas, usar SSE (Server-Sent

Design & UX

Identidade Visual

Elemento

Especificacio

Nome

Logo

Cores primarias

Cores secundarias

Cores de score

Tipografia

icones
Bordas

Espacamento

Aletheia (dArj0ela = verdade)

Olho grego estilizado (Nazar/Mati)
com iris em forma de barcode

Verde #16A34A (saude) + Branco
#FFFFFF (clean)

Cinza #6B7280 (texto) + Verde claro
#DCFCE7 (backgrounds)

0 #EF4444 - @ #F97316 - @ #EAB308 -
© #22C55E

Inter (UD) + Plus Jakarta Sans
(headings)

Lucide Icons (consistente, leve)
rounded-x1 (16px), sombras suaves

Grid 8px, padding generoso

Telas Principais

1. SPLASH / ONBOARDING

- Logo Aletheia (olho grego animado)

- "Descubra a verdade sobre o que vocé come"
- 3 slides: Scan - Entenda - Escolha melhor
- CTA: "Comegar" - setup perfil alimentar

2. HOME

- Header: logo + streak & + XP bar

- Botdo central grande: "® Escanear"
- Ultimos scans (horizontal scroll)

- Score médio da semana (mini gauge)
- Tip do dia (IA)

3. SCANNER
- Camera fullscreen com overlay
- Guia visual: "Aponte para o cdédigo de barras"
- Auto-detect + vibracao
- Loading: animagao do olho "analisando"

4. RESULTADO
- Score gauge animado (destaque principal)
- Alertas personalizados (cards vermelhos/amarelos)
- Lista de ingredientes (expandivel, com icones)
- Alternativas (cards horizontais)
- Botdes: Salvar | Compartilhar | Escanear outro

5. HISTORICO
- Timeline vertical com mini scores
- Filtros: periodo, categoria, score
- Grafico de tendéncia (line chart)

6. PERFIL
- Dados pessoais
- Perfil alimentar (alergias, dieta, goals)
- Plano (free/premium)
- Gamificacdo (nivel, badges, streak)
- Configuracgdes

Micro-interacdes

Scan detectado: Vibragdo + flash verde + som sutil

Score reveal: Animacéo circular de 0 até valor final (1.5s)
Ingrediente tap: Expande com animacdo suave (Framer Motion)
Achievement unlocked: Toast animado com confetti

Pull to refresh: Animacao do olho grego piscando

Roadmap

MVP — Semanas 1-3

Semana 1: Infraestrutura + Scanner - [] Setup monorepo (turborepo ou
pasta separada) - [] Backend: FastAPI boilerplate, auth JWT, migrations - []
Frontend: Next.js 14, PWA setup, layout base - [] Scanner: cAmera + ZXing-
js funcionando - [] Integracdo Open Food Facts (busca basica)

Semana 2: IA + Core Features - [] Andlise IA com GPT-40-mini - [] Score
de saude (algoritmo v1) - [] Tela de resultado completa - [] Cache Redis
para produtos + andlises - [] Hist6rico basico (lista de scans)

Semana 3: Polish + Deploy - [] Design system (cores, tipografia,
componentes) - [] Rate limiting (3 scans/dia free) - [] Alternativas basicas -
[1 Error handling e loading states - [] Deploy: Vercel (front) + Railway
(back) - [] Testes E2E dos fluxos principais

Entregaveis MVP: - PWA funcional no celular - Scan — resultado com score
+ingredientes explicados - 3 scans gratis por dia - Historico dos ultimos 7
dias

v1.0 — Semanas 4-6

Perfil alimentar completo

Alertas personalizados baseados no perfil
Stripe integration (premium)
Gamificacdo (XP, streaks, badges)
Onboarding flow

Push notifications (Web Push API)

Offline mode (scans salvos localmente)

OOoooodd

v2.0 — Semanas 7-10

Compartilhar resultado (social cards)

Comparar 2 produtos lado a lado

Leaderboard semanal

OCR de ingredientes (foto da lista quando sem barcode)
Cadastro de produtos por usudarios

API publica para desenvolvedores

Internacionalizagdo (PT-BR, EN, ES)

Oogoodd

v3.0 — Futuro

App nativo (React Native ou Capacitor)
Integracdo com supermercados (precos)
Scan de carddpios de restaurantes
Didrio alimentar com score diario
Recomendacgdes de receitas saudaveis
Integracdo com Apple Health / Google Fit

ooood

Estrutura de Diretodrios

aletheia/
— backend/
| app/
| F— _init .py
| F— main.py # FastAPI app factory
| }— config.py # Settings (pydantic-settings)
| }— database.py # SQLAlchemy async engine
| }— dependencies.py # Shared deps (get db,
_current_user)
|

|
|
|
|
|
get
| — models/ # SQLAlchemy models

e

—

e
T 178

user.py
product.py
scan.py

— analysis.py

TTT

o
[
)
et
Y
]
<
©
3
o
=
=
—
1)
o
<

plan.py
emas/ # Pydantic schemas
user.py

product.py

scan.py

analysis.py
ters/ # API routes
auth.py

scan.py

products.py

w
>

C

[TTT

=

(o]

TTTTe

T

history.py
— alternatives.py

L— billing.py
rvices/ # Business logic
— auth service.py
F— scan_service.py
F— product_service.py
F— ai service.py
F— score service.py
— alternatives service.py
F— credits_service.py
L— gamification service.py
integrations/ # External APIs
— open_food facts.py
— openai_client.py
L— stripe client.py
utils/
— cache.py
F— security.py
L— prompts.py
alembic/ # Migrations
tests/
Dockerfile
requirements.txt
pyproject.toml

T 11 1T

rrrer—

fr

o

ntend/

src/

— app/ # Next.js App Router
— layout.tsx
page.tsx # Home
scan/page.tsx # Scanner
result/[id]/page.tsx
history/page.tsx
profile/page.tsx
premium/page.tsx
omponents/
ui/ # Design system
scanner/

— CameraView.tsx

L— BarcodeOverlay.tsx

result/

[TTTTT

— ScoreGauge.tsx
F— IngredientlList.tsx
— AlertCards.tsx
L— AlternativeCards.tsx
L— gamification/

— XPBar.tsx

L— BadgeGrid.tsx
ooks/
— useBarcodeScan.ts
F— useAuth.ts
L

useScan.ts

>

o

ib/

— api.ts # Axios instance

L— utils.ts

stores/
— authStore.ts # Zustand
L— scanStore.ts

public/

— manifest.json

F— sw.js

L— icons/

next.config.js

— tailwind.config.ts

L— package. json

1T

1T

docs/

F— ARQUITETURA-TECNICA.md # Este arquivo

F— API.md # Documentagdo da API
L— DEPLOY.md # Guia de deploy
.env.example

README . md

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
—
|

|

|
— docker-compose.yml # PostgreSQL + Redis + Backend
—
[

Estimativa de Custos (10K usuarios ativos)

Servico Custo/més
Vercel (frontend) Free (hobby) ou $20 (pro)
Railway (backend + DB + Redis) ~$20-40
OpenAI GPT-40-mini (~30K scans/més) ~R$90 (~$17)
Stripe (2.5% + fees) Variavel
Dominio ~R$40/ano
Total estimado ~R$250-400/més

Break-even: ~25-30 assinantes premium (R$14,90 x 30 = R$447)

“Aletheia — porque vocé merece saber a verdade sobre o que come.” @

