
ALETHEIA	-	Manual	Técnico

�	Arquitetura	Geral
┌───┐
│																									CLIENTE																																		│
│		┌───┐				│
│		│														Next.js	(PWA)	-	Porta	3080																	│				│
│		│									aletheia.aivertice.com	(Cloudflare)													│				│
│		└───┘				│
└───┘
																														│
																														│	HTTPS
																														▼
┌───┐
│																						NGINX	(Reverse	Proxy)																							│
│																				SSL/TLS	Termination																											│
│												/	→	:3080	(Frontend)																																		│
│									/api	→	:8090	(Backend)																																			│
└───┘
																														│
														┌───────────────┴───────────────┐
														▼																															▼
┌─────────────────────────┐					┌─────────────────────────┐
│			Next.js	Frontend						│					│			FastAPI	Backend							│
│						Porta	3080									│					│						Porta	8090									│
│			/opt/aletheia/frontend│					│		/opt/aletheia/backend		│
└─────────────────────────┘					└─────────────────────────┘
																																														│
																				
┌─────────────────────────┼─────────────────────────┐
																				▼																									▼																									
▼
										┌─────────────────┐						┌─────────────────┐						
┌─────────────────┐
										│			PostgreSQL				│						│	Open	Food	Facts	│						│		
OpenAI	API					│
										│			aletheia	DB			│						│						API								│						│		GPT-
4o-mini				│
										│			Porta	5432				│						│			(3M+	prods)			│						│																	
│
										└─────────────────┘						└─────────────────┘						
└─────────────────┘

Stack	Tecnológico

Camada Tecnologia Versão

Frontend Next.js	(React) 14.x

Backend FastAPI	(Python) 0.100+

Banco	de	Dados PostgreSQL 15+

IA OpenAI	GPT-4o-mini -

Process	Manager PM2 5.x

Proxy/SSL Nginx 1.24+

CDN/DNS Cloudflare -

�	Deploy	e	Infraestrutura

Estrutura	de	Diretórios

/opt/aletheia/
├──	backend/
│			├──	main.py
│			├──	requirements.txt
│			├──	.env
│			└──	...
├──	frontend/
│			├──	package.json
│			├──	.env.local
│			├──	public/
│			│			└──	sw.js	(Service	Worker)
│			└──	...
└──	docs/

PM2	-	Gerenciamento	de	Processos

Processos	ativos:	-	aletheia-backend	-	FastAPI	(porta	8090)	-	aletheia-
frontend	-	Next.js	(porta	3080)

Comandos	úteis:

Nginx	-	Configuração

Arquivo:	/etc/nginx/sites-available/aletheia

server	{
				listen	443	ssl	http2;
				server_name	aletheia.aivertice.com;

#	Status	dos	processos
pm2	status

#	Logs	em	tempo	real
pm2	logs	aletheia-backend
pm2	logs	aletheia-frontend

#	Reiniciar	processos
pm2	restart	aletheia-backend
pm2	restart	aletheia-frontend

#	Reiniciar	tudo
pm2	restart	all

#	Salvar	configuração
pm2	save

				ssl_certificate	
/etc/letsencrypt/live/aletheia.aivertice.com/fullchain.pem;
				ssl_certificate_key	
/etc/letsencrypt/live/aletheia.aivertice.com/privkey.pem;

				#	Frontend
				location	/	{
								proxy_pass	http://127.0.0.1:3080;
								proxy_http_version	1.1;
								proxy_set_header	Upgrade	$http_upgrade;
								proxy_set_header	Connection	'upgrade';
								proxy_set_header	Host	$host;
								proxy_cache_bypass	$http_upgrade;
				}

				#	Backend	API
				location	/api	{
								proxy_pass	http://127.0.0.1:8090;
								proxy_http_version	1.1;
								proxy_set_header	Host	$host;
								proxy_set_header	X-Real-IP	$remote_addr;
								proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;
								proxy_set_header	X-Forwarded-Proto	$scheme;
				}
}

server	{
				listen	80;
				server_name	aletheia.aivertice.com;
				return	301	https://$server_name$request_uri;
}

SSL/TLS

Provedor:	Let’s	Encrypt	(Certbot)
Renovação:	Automática	via	cron
CDN:	Cloudflare	(SSL	Full	Strict)

�		Banco	de	Dados

Conexão

Host:	localhost
Porta:	5432
Database:	aletheia
User:	aletheia
Password:	Aletheia2026!

Connection	String:

#	Renovar	certificado	manualmente
sudo	certbot	renew

#	Verificar	certificado
sudo	certbot	certificates

postgresql://aletheia:Aletheia2026!@localhost:5432/aletheia

Tabelas	Principais

users

products

scans

Comandos	Úteis

CREATE	TABLE	users	(
				id	SERIAL	PRIMARY	KEY,
				email	VARCHAR(255)	UNIQUE	NOT	NULL,
				password_hash	VARCHAR(255)	NOT	NULL,
				name	VARCHAR(255),
				plan	VARCHAR(50)	DEFAULT	'free',		--	'free'	ou	'premium'
				scans_today	INTEGER	DEFAULT	0,
				last_scan_date	DATE,
				created_at	TIMESTAMP	DEFAULT	NOW(),
				updated_at	TIMESTAMP	DEFAULT	NOW()
);

CREATE	TABLE	products	(
				id	SERIAL	PRIMARY	KEY,
				barcode	VARCHAR(50)	UNIQUE	NOT	NULL,
				name	VARCHAR(255),
				brand	VARCHAR(255),
				categories	TEXT,
				ingredients	TEXT,
				nutrition_data	JSONB,
				image_url	TEXT,
				source	VARCHAR(50),		--	'openfoodfacts',	'manual'
				created_at	TIMESTAMP	DEFAULT	NOW(),
				updated_at	TIMESTAMP	DEFAULT	NOW()
);

CREATE	TABLE	scans	(
				id	SERIAL	PRIMARY	KEY,
				user_id	INTEGER	REFERENCES	users(id),
				product_id	INTEGER	REFERENCES	products(id),
				barcode	VARCHAR(50),
				score	INTEGER,		--	0-100
				analysis	JSONB,		--	Análise	completa	da	IA
				recipe	TEXT,					--	Receita	sugerida
				scanned_at	TIMESTAMP	DEFAULT	NOW()
);

#	Conectar	ao	banco
psql	-U	aletheia	-d	aletheia	-h	localhost

#	Backup
pg_dump	-U	aletheia	-d	aletheia	>	backup_$(date	+%Y%m%d).sql

#	Restore
psql	-U	aletheia	-d	aletheia	<	backup_20260210.sql

�	APIs	e	Endpoints

Autenticação

POST	/api/auth/register

Registra	novo	usuário.

Request:

Response	(201):

POST	/api/auth/login

Autentica	usuário	existente.

Request:

Response	(200):

Scans

POST	/api/scan

{
				"email":	"usuario@email.com",
				"password":	"senha123",
				"name":	"Nome	do	Usuário"
}

{
				"id":	1,
				"email":	"usuario@email.com",
				"name":	"Nome	do	Usuário",
				"plan":	"free",
				"token":	"eyJhbGciOiJIUzI1NiIs..."
}

{
				"email":	"usuario@email.com",
				"password":	"senha123"
}

{
				"token":	"eyJhbGciOiJIUzI1NiIs...",
				"user":	{
								"id":	1,
								"email":	"usuario@email.com",
								"name":	"Nome	do	Usuário",
								"plan":	"free",
								"scans_today":	2
				}
}

Analisa	um	produto	pelo	código	de	barras.

Headers:

Authorization:	Bearer	<token>

Request:

Response	(200):

Erros:	-	403:	Limite	de	scans	atingido	(plano	free)	-	404:	Produto	não
encontrado	-	500:	Erro	na	análise

Histórico

GET	/api/history

Lista	histórico	de	scans	do	usuário.

Headers:

Authorization:	Bearer	<token>

Query	Params:	-	limit	(opcional):	Número	de	resultados	(default:	20)	-	
offset	(opcional):	Paginação

{
				"barcode":	"7891000100103"
}

{
				"id":	123,
				"product":	{
								"barcode":	"7891000100103",
								"name":	"Leite	Condensado",
								"brand":	"Moça",
								"image_url":	"https://..."
				},
				"score":	25,
				"classification":	"Péssimo",
				"analysis":	{
								"summary":	"Produto	com	alto	teor	de	açúcar...",
								"positives":	["Fonte	de	cálcio"],
								"negatives":	["Alto	teor	de	açúcar",	"Calorias	elevadas"],
								"additives":	[],
								"nutrition":	{
												"calories":	321,
												"sugar":	55,
												"sodium":	128
								}
				},
				"recipe":	{
								"title":	"Leite	condensado	caseiro	saudável",
								"ingredients":	["1	litro	de	leite	desnatado",	"..."],
								"instructions":	"..."
				}
}

Response	(200):

GET	/api/history/{id}

Retorna	detalhes	de	um	scan	específico.

Response	(200):

�	Integrações

Open	Food	Facts	API

Base	de	dados	aberta	com	mais	de	3	milhões	de	produtos.

Endpoint:

https://world.openfoodfacts.org/api/v2/product/{barcode}.json

Exemplo:

OpenAI	GPT-4o-mini

{
				"total":	45,
				"scans":	[
								{
												"id":	123,
												"barcode":	"7891000100103",
												"product_name":	"Leite	Condensado",
												"score":	25,
												"scanned_at":	"2026-02-10T14:30:00Z"
								},
								...
]
}

{
				"id":	123,
				"product":	{	...	},
				"score":	25,
				"analysis":	{	...	},
				"recipe":	{	...	},
				"scanned_at":	"2026-02-10T14:30:00Z"
}

import	requests

def	get_product(barcode:	str):
				url	=	

f"https://world.openfoodfacts.org/api/v2/product/{barcode}.json"
				response	=	requests.get(url)
				if	response.status_code	==	200:
								data	=	response.json()
								if	data.get("status")	==	1:
												return	data["product"]
				return	None

Usamos	o	modelo	GPT-4o-mini	para	análise	inteligente	dos	ingredientes.

Uso:

�	PWA	/	Service	Worker

O	ALETHEIA	é	uma	Progressive	Web	App	(PWA),	permitindo:	-	Instalação
na	home	screen	-	Funcionamento	parcial	offline	-	Notificações	push	(futuro)

Service	Worker

Arquivo:	/opt/aletheia/frontend/public/sw.js

from	openai	import	OpenAI

client	=	OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

def	analyze_product(product_data:	dict)	->	dict:
				prompt	=	f"""
				Analise	este	produto	alimentício	e	forneça:
				1.	Score	de	saúde	(0-100)
				2.	Pontos	positivos
				3.	Pontos	negativos
				4.	Análise	dos	aditivos
				5.	Sugestão	de	receita	saudável	alternativa

				Produto:	{product_data['name']}
				Ingredientes:	{product_data['ingredients']}
				Valores	nutricionais:	{product_data['nutrition']}
				"""
				
				response	=	client.chat.completions.create(
								model="gpt-4o-mini",
								messages=[{"role":	"user",	"content":	prompt}],
								response_format={"type":	"json_object"}
)
				
				return	json.loads(response.choices[0].message.content)

const	CACHE_NAME	=	'aletheia-v1';
const	urlsToCache	=	[
				'/',
				'/scan',
				'/history',
				'/offline.html'
];

self.addEventListener('install',	(event)	=>	{
				event.waitUntil(
								caches.open(CACHE_NAME)
												.then((cache)	=>	cache.addAll(urlsToCache))
);
});

self.addEventListener('fetch',	(event)	=>	{
				event.respondWith(

Manifest

Arquivo:	/opt/aletheia/frontend/public/manifest.json

⚙	Variáveis	de	Ambiente

Backend	(.env)

#	Database
DATABASE_URL=postgresql://aletheia:Aletheia2026!@localhost:5432/aletheia

#	OpenAI
OPENAI_API_KEY=sk-...

#	JWT
JWT_SECRET=sua-chave-secreta-muito-longa
JWT_ALGORITHM=HS256
JWT_EXPIRATION_HOURS=24

#	App
APP_ENV=production
DEBUG=false
CORS_ORIGINS=https://aletheia.aivertice.com

Frontend	(.env.local)

NEXT_PUBLIC_API_URL=https://aletheia.aivertice.com/api

								caches.match(event.request)
												.then((response)	=>	response	||	fetch(event.request))
);
});

{
				"name":	"ALETHEIA",
				"short_name":	"ALETHEIA",
				"description":	"Scanner	de	rótulos	com	IA",
				"start_url":	"/",
				"display":	"standalone",
				"background_color":	"#ffffff",
				"theme_color":	"#22c55e",
				"icons":	[
								{
												"src":	"/icon-192.png",
												"sizes":	"192x192",
												"type":	"image/png"
								},
								{
												"src":	"/icon-512.png",
												"sizes":	"512x512",
												"type":	"image/png"
								}
]
}

NEXT_PUBLIC_APP_NAME=ALETHEIA

�	Monitoramento

PM2

Logs

�	Backup	e	Manutenção

Backup	Automático	(Cron)

Manutenção	do	Banco

#	Dashboard	em	tempo	real
pm2	monit

#	Status	detalhado
pm2	show	aletheia-backend

#	Métricas
pm2	info	aletheia-backend

#	Logs	do	backend
tail	-f	~/.pm2/logs/aletheia-backend-out.log
tail	-f	~/.pm2/logs/aletheia-backend-error.log

#	Logs	do	frontend
tail	-f	~/.pm2/logs/aletheia-frontend-out.log

#	Logs	do	Nginx
tail	-f	/var/log/nginx/access.log
tail	-f	/var/log/nginx/error.log

#	Logs	do	PostgreSQL
tail	-f	/var/log/postgresql/postgresql-15-main.log

#	Editar	crontab
crontab	-e

#	Adicionar	backup	diário	às	3h
0	3	*	*	*	pg_dump	-U	aletheia	-d	aletheia	>	

/opt/aletheia/backups/backup_$(date	+\%Y\%m\%d).sql

#	Limpar	backups	antigos	(manter	últimos	30	dias)
0	4	*	*	*	find	/opt/aletheia/backups	-name	"*.sql"	-mtime	+30	-

delete

--	Vacuum	e	análise	(rodar	semanalmente)
VACUUM	ANALYZE;

--	Verificar	tamanho	das	tabelas

Atualizações

�	Troubleshooting

Problema:	Backend	não	inicia

Problema:	Erro	de	conexão	com	banco

Problema:	Certificado	SSL	expirado

Problema:	Open	Food	Facts	não	responde

SELECT	
				relname	as	table,
				pg_size_pretty(pg_total_relation_size(relid))	as	size
FROM	pg_catalog.pg_statio_user_tables
ORDER	BY	pg_total_relation_size(relid)	DESC;

#	Backend
cd	/opt/aletheia/backend
git	pull
pip	install	-r	requirements.txt
pm2	restart	aletheia-backend

#	Frontend
cd	/opt/aletheia/frontend
git	pull
npm	install
npm	run	build
pm2	restart	aletheia-frontend

#	Verificar	logs
pm2	logs	aletheia-backend	--lines	50

#	Verificar	porta	em	uso
lsof	-i	:8090

#	Testar	manualmente
cd	/opt/aletheia/backend
python	-m	uvicorn	main:app	--host	0.0.0.0	--port	8090

#	Verificar	se	PostgreSQL	está	rodando
sudo	systemctl	status	postgresql

#	Testar	conexão
psql	-U	aletheia	-d	aletheia	-h	localhost	-c	"SELECT	1"

#	Renovar
sudo	certbot	renew

#	Reiniciar	Nginx
sudo	systemctl	restart	nginx

#	Testar	API	diretamente

�	Contatos	Técnicos

Infraestrutura:	infra@aivertice.com
Desenvolvimento:	dev@aivertice.com

Última	atualização:	Fevereiro	2026

curl	
"https://world.openfoodfacts.org/api/v2/product/7891000100103.json"

#	Verificar	rate	limiting	(máx	100	req/min)

