ALETHEIA - Manual Técnico

0 Arquitetura Geral

CLIENTE

Next.js (PWA) - Porta 3080
aletheia.aivertice.com (Cloudflare)

| HTTPS

v

NGINX (Reverse Proxy)
SSL/TLS Termination

/ - :3080 (Frontend)
/api - :8090 (Backend)

[
v

1
v

1
Next.js Frontend |
Porta 3080 |
/opt/aletheia/frontend|
|

FastAPI Backend

/opt/aletheia/backend

Porta 8090

v v
v
[1 [1
1
| PostgresqL | | Open Food Facts | |
OpenAI API |
| aletheia DB | | API | | GPT-
40-mini |
| Porta 5432 | | (3M+ prods) | |
|
| | L |
| |
Stack Tecnologico
Camada Tecnologia Versdo
Frontend Next.js (React) 14x
Backend FastAPI (Python) 0.100+
Banco de Dados PostgreSQL 15+

IA

OpenAlI GPT-40-mini

Process Manager PM2 5.X
Proxy/SSL Nginx 1.24+
CDN/DNS Cloudflare -

0 Deploy e Infraestrutura

Estrutura de Diretorios

/opt/aletheia/

— backend/

F— main.py

F— requirements.txt
.env

[T

rontend/

package.json

.env.local

public/

L— sw.js (Service Worker)

I
T_TTT*

Qo
o
0
w
~

PM2 - Gerenciamento de Processos

Processos ativos: - aletheia-backend - FastAPI (porta 8090) - aletheia-
frontend - Next.js (porta 3080)

Comandos uteis:
pm2 status

pm2 logs aletheia-backend
pm2 logs aletheia-frontend

pm2 restart aletheia-backend
pm2 restart aletheia-frontend

pm2 restart all

pm2 save

Nginx - Configuracao
Arquivo: /etc/nginx/sites-available/aletheia
server {

listen 443 ssl http2;
server _name aletheia.aivertice.com;

ssl certificate
/etc/letsencrypt/live/aletheia.aivertice.com/fullchain.pem;

ssl certificate key
/etc/letsencrypt/live/aletheia.aivertice.com/privkey.pem;

Frontend

location / {
proxy pass http://127.0.0.1:3080;
proxy http version 1.1;
proxy set header Upgrade $http upgrade;
proxy set header Connection 'upgrade';
proxy set header Host $host;
proxy cache bypass $http upgrade;

}

Backend API
location /api {
proxy pass http://127.0.0.1:8090;
proxy http version 1.1;
proxy set header Host $host;
proxy set header X-Real-IP $remote addr;
proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy set header X-Forwarded-Proto $scheme;

}
}
server {
listen 80;
server _name aletheia.aivertice.com;
return 301 https://$server name$request uri;
}
SSL/TLS

e Provedor: Let’s Encrypt (Certbot)
e Renovacdo: Automatica via cron
e CDN: Cloudflare (SSL Full Strict)

sudo certbot renew

sudo certbot certificates

Banco de Dados

Conexao

Host: localhost

Porta: 5432

Database: aletheia
User: aletheia
Password: Aletheia2026'!

Connection String:

postgresql://aletheia:Aletheia2026!@localhost:5432/aletheia

Tabelas Principais

users

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
password hash VARCHAR(255) NOT NULL,
name VARCHAR(255),
plan VARCHAR(50) DEFAULT 'free', ~-- 'free' ou 'premium'
scans_today INTEGER DEFAULT 0,
last scan date DATE,
created at TIMESTAMP DEFAULT NOW(),
updated at TIMESTAMP DEFAULT NOW()
);

products

CREATE TABLE products (
id SERIAL PRIMARY KEY,
barcode VARCHAR(50) UNIQUE NOT NULL,
name VARCHAR(255),
brand VARCHAR(255),
categories TEXT,
ingredients TEXT,
nutrition data JSONB,
image url TEXT,
source VARCHAR(50), ~-- 'openfoodfacts', 'manual'
created at TIMESTAMP DEFAULT NOW(),
updated at TIMESTAMP DEFAULT NOW()

scans

CREATE TABLE scans (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
product id INTEGER REFERENCES products(id),
barcode VARCHAR(50),

score INTEGER, -- 0-100
analysis JSONB, -- Analise completa da IA
recipe TEXT, -- Receita sugerida

scanned_at TIMESTAMP DEFAULT NOW()
)i

Comandos Uteis

Conectar ao banco
psql -U aletheia -d aletheia -h localhost

Backup
pg dump -U aletheia -d aletheia > backup $(date +%Y%m%d).sql

Restore
psql -U aletheia -d aletheia < backup 20260210.sql

0 APIs e Endpoints

Autenticacao
POST /api/auth/register

Registra novo usudrio.

Request:
{
"email": "usuario@email.com",
"password": "senhal23",
"name": "Nome do Usuario"
}
Response (201):
{
"id": 1,
"email": "usuario@email.com",
"name": "Nome do Usuario",
"plan": "free",
"token": "eyJhbGci0iJIUzI1INiIs..."
}
POST /api/auth/login

Autentica usudrio existente.

Request:
{
"email": "usuario@email.com",
"password": "senhal23"
}
Response (200):
{
"token": "eyJhbGciOiJIUzIINiIs...",
"user": {
"id": 1,
"email": "usuario@email.com",
"name": "Nome do Usuéario",
"plan": "free",
"scans_today": 2
}
}
Scans

POST /api/scan

Analisa um produto pelo c6digo de barras.
Headers:

Authorization: Bearer <token>

Request:
{
"barcode": "7891000100103"
}
Response (200):
{
"id": 123,
"product": {
"barcode": "7891000100103",
"name": "Leite Condensado",
"brand": "Moca",
"image url": "https://..."
}
"score": 25,
"classification": "Péssimo",
"analysis": {
"summary": "Produto com alto teor de aclcar...",
"positives": ["Fonte de calcio"],
"negatives": ["Alto teor de agucar", "Calorias elevadas"],
"additives": [1,
"nutrition": {
"calories": 321,
"sugar": 55,
"sodium": 128
}
I
"recipe": {
"title": "Leite condensado caseiro saudavel",
"ingredients": ["1 litro de leite desnatado", "..."],
"instructions": "..."
}
h

Erros: - 403: Limite de scans atingido (plano free) - 404: Produto ndo
encontrado - 500: Erro na anélise

Historico
GET /api/history

Lista histérico de scans do usuario.

Headers:
Authorization: Bearer <token>

Query Params: - limit (opcional): Numero de resultados (default: 20) -
offset (opcional): Paginacgao

Response (200):

{
"total": 45,
"scans": [
{
"id": 123,
"barcode": "7891000100103",
"product name": "Leite Condensado",
"score": 25,
"scanned at": "2026-02-10T14:30:00Z"
+
]
}
GET /api/history/{id}

Retorna detalhes de um scan especifico.
Response (200):

{
"id": 123,
"product": { ... },
"score": 25,
"analysis": { ...
"recipe": { ... },
"scanned at": "2026-02-10T14:30:00Z"

}I

0 Integracoes

Open Food Facts API

Base de dados aberta com mais de 3 milhdes de produtos.
Endpoint:
https://world.openfoodfacts.org/api/v2/product/{barcode}.json

Exemplo:

import requests

def get product(barcode: str):
url =
f"https://world.openfoodfacts.org/api/v2/product/{barcode}.json"
response = requests.get(url)
if response.status code == 200:
data = response.json()
if data.get("status") == 1:
return data["product"]
return None

OpenAIl GPT-40-mini

Usamos o0 modelo GPT-40-mini para anélise inteligente dos ingredientes.
Uso:
from openai import OpenAl
client = OpenAI(api key=os.getenv("OPENAI API KEY"))
def analyze product(product data: dict) -> dict:
prompt = f"""

Analise este produto alimenticio e forneca:
1. Score de saude (0-100)

2. Pontos positivos

3. Pontos negativos

4. Analise dos aditivos

5. Sugestdo de receita saudavel alternativa

Produto: {product datal'name']}
Ingredientes: {product datal'ingredients']}
Valores nutricionais: {product data['nutrition']}

response = client.chat.completions.create(
model="gpt-40-mini",
messages=[{"role": "user", "content": prompt}],
response_format={"type": "json object"}

)

return json.loads(response.choices[0].message.content)

0 PWA / Service Worker

O ALETHEIA é uma Progressive Web App (PWA), permitindo: - Instalacao
na home screen - Funcionamento parcial offline - Notifica¢6es push (futuro)

Service Worker

Arquivo: /opt/aletheia/frontend/public/sw.js

const CACHE NAME = 'aletheia-vl';
const urlsToCache = [

WA

'/scan',

'/history"',

"/offline.html'
1;

self.addEventListener('install', (event) => {
event.waitUntil(
caches.open(CACHE_NAME)
.then((cache) => cache.addAll(urlsToCache))
);
1)

self.addEventListener('fetch', (event) => {
event.respondWith(

caches.match(event.request)

.then((response) => response || fetch(event

);
});

Manifest

Arquivo:/opt/aletheia/frontend/public/manifest.json

{
"name": "ALETHEIA",
"short name": "ALETHEIA",
"description": "Scanner de rétulos com IA",
"start urt": "/",
"display": "standalone",
"background color": "#ffffff",
"theme color": "#22c55e",
"icons": [
{
"src": "/icon-192.png",
"sizes": "192x192",
"type": "image/png"
}
{
"src": "/icon-512.png",
"sizes": "512x512",
"type": "image/png"
}
]
b

.request))

¥ Variaveis de Ambiente

Backend (.env)

Database

DATABASE URL=postgresql://aletheia:Aletheia2026!@localhost

OpenAl
OPENAI API KEY=sk-...

IWT

JWT SECRET=sua-chave-secreta-muito-longa
JWT_ALGORITHM=HS256
JWT_EXPIRATION_HOURS=24

App

APP_ENV=production

DEBUG=false

CORS ORIGINS=https://aletheia.aivertice.com

L]

Frontend (.env.local)

NEXT PUBLIC API URL=https://aletheia.aivertice.com/api

:5432/aletl

NEXT_PUBLIC_APP_NAME=ALETHEIA

lul Monitoramento

PM2

Dashboard em tempo real
pm2 monit

Status detalhado
pm2 show aletheia-backend

Métricas
pm2 info aletheia-backend

Logs

Logs do backend
tail -f ~/.pm2/logs/aletheia-backend-out.log
tail -f ~/.pm2/logs/aletheia-backend-error.log

Logs do frontend
tail -f ~/.pm2/logs/aletheia-frontend-out.log

Logs do Nginx
tail -f /var/log/nginx/access.log
tail -f /var/log/nginx/error.log

Logs do PostgreSQL
tail -f /var/log/postgresql/postgresql-15-main.log

0 Backup e Manutencao

Backup Automatico (Cron)

Editar crontab
crontab -e

Adicionar backup didrio as 3h

0 3 * * * pg dump -U aletheia -d aletheia >
/opt/aletheia/backups/backup $(date +\%Y\%m\%d).sql

Limpar backups antigos (manter Gltimos 30 dias)

0 4 * * * find /opt/aletheia/backups -name "*.sql" -mtime +30 -
delete

Manutencdo do Banco

-- Vacuum e analise (rodar semanalmente)
VACUUM ANALYZE;

-- Verificar tamanho das tabelas

SELECT

relname as table,

pg size pretty(pg total relation size(relid)) as size
FROM pg catalog.pg statio user tables
ORDER BY pg total relation size(relid) DESC;

Atualizacdes

Backend

cd /opt/aletheia/backend

git pull

pip install -r requirements.txt
pm2 restart aletheia-backend

Frontend

cd /opt/aletheia/frontend

git pull

npm install

npm run build

pm2 restart aletheia-frontend

0 Troubleshooting

Problema: Backend ndo inicia

Verificar logs
pm2 logs aletheia-backend --lines 50

Verificar porta em uso
lsof -i :8090

Testar manualmente

cd /opt/aletheia/backend
python -m uvicorn main:app --host 0.0.0.0 --port 8090

Problema: Erro de conexao com banco

Verificar se PostgreSQL esta rodando
sudo systemctl status postgresql

Testar conexdo
psql -U aletheia -d aletheia -h localhost -c "SELECT 1"

Problema: Certificado SSL expirado

Renovar
sudo certbot renew

Reiniciar Nginx
sudo systemctl restart nginx

Problema: Open Food Facts ndo responde

Testar API diretamente

curl
"https://world.openfoodfacts.org/api/v2/product/7891000100103. json"

Verificar rate limiting (méx 100 req/min)

0 Contatos Técnicos

e Infraestrutura: infra@aivertice.com
¢ Desenvolvimento: dev@aivertice.com

Ultima atualizagdo: Fevereiro 2026

