A verdade sobre o que vocé come

Arquitetura Técnica

I ALETHEIA — Arquitetura Técnica

Aletheia (GAn6ela) — "verdade” em grego. Scanner de rotulos alimentares com IA que revela a verdade sobre
0 que vocé come.

< indice

—_

. Viséo Geral

. Stack Tecnolégica

. Arquitetura de Sistema

. Médulos

. Modelo de Dados

Fluxo Principal

. APIs Externas

. PWA CONTENT_PLACEHOLDERamp; Camera
. Monetizacéo Técnica

. Performance

© © N o o A w N

=
-
> O

. Design CONTENT_PLACEHOLDERamp; UX
. Roadmap

. Estrutura de Diretorios

[—
w N

Visao Geral

O usudrio aponta a camera do celular para o cédigo de barras de um alimento. Em menos de 5 segundos, recebe:

e Explicacao simples de cada ingrediente (“como se tivesse 10 anos”)

e Score de saude de 0 a 100 (com breakdown visual)

e Alertas sobre ingredientes problematicos (corantes, conservantes, excesso de sodio)
e Alternativas mais saudaveis disponiveis na mesma categoria

e Compatibilidade com seu perfil alimentar (alergias, dietas, restricoes)

I Stack Tecnoldgica

Backend
Componente Tecnologia Justificativa
Async nativo, tipagem forte, docs
Framework FastAPI (Python 3.12)

automaticas

ORM SQLAIchemy 2.0 + Alembic Migrations versionadas, async support

file:///tmp/ARQUITETURA-TECNICA.html#vis%C3%A3o-geral
file:///tmp/ARQUITETURA-TECNICA.html#stack-tecnol%C3%B3gica
file:///tmp/ARQUITETURA-TECNICA.html#arquitetura-de-sistema
file:///tmp/ARQUITETURA-TECNICA.html#m%C3%B3dulos
file:///tmp/ARQUITETURA-TECNICA.html#modelo-de-dados
file:///tmp/ARQUITETURA-TECNICA.html#fluxo-principal
file:///tmp/ARQUITETURA-TECNICA.html#apis-externas
file:///tmp/ARQUITETURA-TECNICA.html#pwa--c%C3%A2mera
file:///tmp/ARQUITETURA-TECNICA.html#monetiza%C3%A7%C3%A3o-t%C3%A9cnica
file:///tmp/ARQUITETURA-TECNICA.html#performance
file:///tmp/ARQUITETURA-TECNICA.html#design--ux
file:///tmp/ARQUITETURA-TECNICA.html#roadmap
file:///tmp/ARQUITETURA-TECNICA.html#estrutura-de-diret%C3%B3rios

JSONB para dados flexiveis, full-text

Banco principal PostgreSQL 16

search

. Cache de produtos, rate limiting,

Cache Redis 7 .

sessbes
Task queue Celery + Redis broker Andlises IA em background
Auth JWT (access + refresh tokens) Stateless, rotagao de tokens
Servidor Uvicorn + Gunicorn Workers async para alta concorréncia

Frontend
Componente Tecnologia Justificativa
Framework Next.js 14 (App Router) SSR, RSC, PWA-ready
ul Tailwind CSS + Radix Ul Design system consistente, acessivel
Estado Zustand Leve, simples, sem boilerplate
R navigator.mediaDevices + Scan direto no browser, sem SDK
Camera/Barcode o .
ZXing-js nativo
. Cache client-side, retry, optimistic

HTTP Axios + React Query (TanStack)

updates
PWA next-pwa (Workbox) Offline support, install prompt
Animacoes Framer Motion Score gauge, transi¢coes suaves

Infra

Deploy backend Railway / Fly.io (ou VPS com Docker)
Deploy frontend Vercel

Cl/cD GitHub Actions

Monitoramento Sentry (erros) + Uptime Kuma (status)
Logs Estruturados com structlog - stdout
Storage S3-compatible (imagens de produtos)

Arquitetura de Sistema

r - 1 —
| Auth | | Scanner | | Produtos |
\ |
L i

Module | Module | | Module

e e —

I T ——

| Andlise | | Score | |Alternativ. |
| | satde | | Module

[I

A
|Histérico | | Perfil | |Gamificac&ol|
| Module | |Alimentar | Module

—Y— —Y—1 Y
|Postgres| | Redis

| 16 || 7

I I

| APIs Externas

| * Open Food Facts

| * OpenAI GPT-40-mini
| « Stripe
- 1

Modulos

1. Auth Module

Responsabilidade: Registro, login, gerenciamento de sessao.

(email + senha ou OAuth)
POST /auth/login Retorna access token + refresh token
POST /auth/refresh Renova ac s_token

POST /auth/register Cria conta

POST /auth/forgot- ' Envia email de reset

POST /auth/reset-pa 0 Aplica nova senha

GET /auth/me Retorna perfil do usuario logado
DELETE /auth/me Deleta conta (LGPD)

e Senhas: bcrypt (cost factor 12)
e Tokens: JWT RS256, access_token (15min), refresh_token (30 dias)

e OAuth: Google e Apple Sign-In (futuro)

Rate limit: 5 tentativas de login por minuto por IP

2. Scanner Module

Responsabilidade: Decodificacado de barcode e orquestragao do fluxo de scan.

POST /scan - Recebe barcode, orquestra busca + andlise

GET /scan/{scan id} - Retorna resultado completo de um scan

Fluxo interno: 1. Recebe barcode (EAN-13/UPC-A) do frontend 2. Verifica rate limit do usuario (créditos) 3. Busca
produto no cache Redis - DB local - Open Food Facts 4. Se produto novo, persiste no DB 5. Dispara analise IA (sync
se cache hit, async se primeira vez) 6. Retorna resultado consolidado

Barcode no frontend: - ZXing-js para decodificacao client-side - Fallback: envio de imagem para Google Cloud Vision
API (barcode detection) - Suporte: EAN-13, EAN-8, UPC-A, UPC-E

3. Produtos Module

Responsabilidade: CRUD de produtos, cache e sincronizagao com Open Food Facts.

Estratégia de cache (3 camadas):

Camada TTL Detalhes

Redis 24h Hot cache, produtos escaneados recentemente
PostgreSQL 30 dias Cache persistente, atualizado via cron

Open Food Facts Sob demanda Source of truth, fallback

Dados armazenados do produto: - Nome, marca, categoria - Lista de ingredientes (texto original) - Tabela nutricional
(por 1009 e por porgao) - Nutri-Score (A-E) quando disponivel - NOVA group (1-4, grau de processamento) - Imagens
(frente, ingredientes, nutricional) - Alérgenos declarados

4. Analise IA Module

Responsabilidade: Andlise inteligente de ingredientes via GPT-40-mini.

Prompt Engineering:

Otimizacdes: - Cache de andlises por hash(ingredientes + perfil_usuario) - GPT-40-mini para custo baixo (~$0.15/1M

input tokens) - Structured output (JSON mode) para parsing confiavel - Timeout: 10s, retry com exponential backoff -
Fallback: analise baseada em regras se IA falhar

Response format (JSON):

CONTENT PLACEHOLDERquot;ingredientsCONTENT PLACEHOLDERquot;: [

{
1

CONTENT PLACEHOLDERquot;nameCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;Agucar invertid
CONTENT _PLACEHOLDERquot;popular nameCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;AcUcar
CONTENT PLACEHOLDERquot;explanationCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;E acgucar
CONTENT PLACEHOLDERquot;classificationCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;warni
CONTENT PLACEHOLDERquot; reasonCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;Alto indice g

CONTENT_PLACEHOLDERquot;health scoreCONTENT PLACEHOLDERquot;: 35,
CONTENT_PLACEHOLDERquot;score breakdownCONTENT PLACEHOLDERquot;: {
CONTENT_ PLACEHOLDERquot;naturalnessCONTENT PLACEHOLDERquot;: 20,
CONTENT PLACEHOLDERquot;nutritionCONTENT PLACEHOLDERquot;: 40,
CONTENT PLACEHOLDERquot;processingCONTENT PLACEHOLDERquot;: 30,
CONTENT_PLACEHOLDERquot;additivesCONTENT PLACEHOLDERquot;: 50
+
CONTENT PLACEHOLDERquot;problematic top3CONTENT PLACEHOLDERquot;: [CONTENT PLACEHOLDERquot;Aclucar
CONTENT PLACEHOLDERquot; summaryCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;Este produto é u
CONTENT _PLACEHOLDERquot;alertsCONTENT PLACEHOLDERquot;: [
{CONTENT_PLACEHOLDERquot; typeCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;allergenCONTENT

5. Score de Saude Module

Responsabilidade: Calculo do score 0-100, combinando dados nutricionais + analise IA.

Algoritmo de Score:

def calculate health score(product, ai analysis)
score = 100

1. Nutri-Score (peso: 25%)
nutri penalty = {CONTENT PLACEHOLDERquot;aCONTENT PLACEHOLDERquot;: ©, CONTENT PLACEHOLDERquot;
score -= nutri penalty.get(product.nutri score, 20) * 0.25

2. NOVA Group - Processamento (peso: 25%)
nova penalty = {1: 0, 2: 10, 3: 25, 4: 40}
score -= nova penalty.get(product.nova group, 30)

3. Ingredientes problematicos (peso: 25%)
problematic_count = len(ai analysis.problematic_ingredients)
score -= min(problematic count * 8, 40) * 0.25

4. Perfil nutricional (peso:

Penaliza excesso de: sdédio, acglcar, gordura saturada, gordura trans
Bonifica presenca de: fibra, proteina, vitaminas

nutrition score = calculate nutrition subscore(product.nutrition)
score -= (100 - nutrition score) * 0.25

return max(0, min(100, round(score)))

1 3

Visualizag&o: - Gauge circular animado (0-100) - Cores: 0-30 | ® 31-50 | @ 51-70 | © 71-100 - Breakdown em 4
categorias com barras horizontais

6. Historico Module

Responsabilidade: Timeline de scans do usuario, estatisticas e tendéncias.

GET /history - Lista scans do usudrio (paginado)

Funcionalidades: - Filtro por periodo, score range, categoria - Score médio dos ultimos 7/30/90 dias - Grafico de
tendéncia (melhoria ao longo do tempo) - “Seus piores habitos” (categorias com menor score médio) - Export
CSV/PDF (premium)

7. Alternativas Module

Responsabilidade: Sugerir produtos mais saudaveis na mesma categoria.

Logica: 1. Identifica categoria do produto (ex: “"biscoito recheado”) 2. Busca produtos da mesma categoria no DB com
score CONTENT_PLACEHOLDERGgt; produto atual 3. Ordena por: score DESC, popularidade (n° de scans) DESC 4.
Retorna top 5 alternativas com comparativo

Response:

8. Perfil Alimentar Module

Responsabilidade: Preferéncias, alergias e restricdes do usuario.

Dados do perfil:

Impacto no fluxo: - Analise IA recebe perfil como contexto - Alertas personalizados (“A Contém gliten — vocé é

celiaco”) - Score ajustado por relevancia pessoal - Alternativas filtradas por compatibilidade

9. Gamificacao Module

Responsabilidade: Engajamento via conquistas, streaks e niveis.

GET /gamification/profile - XP, nivel, conquistas
GET /gamification/achievements - Lista todas as conquistas

GET /gamification/leaderboard - Ranking semanal (premium)

Sistema de XP: | Acdo | XP | |—|—]| | Scan de produto | +10 | | Primeiro scan do dia | +20 (bdnus streak) | | Escolher
alternativa saudavel | +30 | | Completar perfil alimentar | +50 | | Streak de 7 dias | +100 | | Compartilhar resultado | +15

Conquistas (badges): - Primeiro Scan - Q Detetive (10 scans) - ¢ Expert (100 scans) - Escolha Saudavel (5
alternativas escolhidas) - ¢ Streak Master (30 dias seguidos) - lul Analista (score médio CONTENT_PLACEHOLDERgt;
70 no més)

Modelo de Dados

Diagrama ER Simplificado

1
|dietary profiles]

id id (PK)
email name user id (FK)
password ha price allergies|[] \
name diet \
avoid[] |
Xp goals[] \
level conditions[] |
streak days —_
created at

- 1

id (PK)
barcode
name
brand
score category
scanned at ingredients
source nutrition {}
nutri score
nova_group
images {}
allergens[]
off data {}
updated at

1
analyses

| id (PK)

|

product id | product id |
| |

|

classification| score

name profile hash

popular name ingredients[]]|
|

blanation | breakdown {} |
summary |
alerts[] |
model version|
created at |

alternatives achievements

[

\

\

‘ id (PK) id (PK)

| product id | user _id (FK)
| alt product id| badge type

| score diff | unlocked at
\

L

highlights[] |
e —

1
scan credits

id

user id
date
used
limit

DDL Principais Tabelas

- Usudrios

CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
password hash VARCHAR(255) NOT NULL,
name VARCHAR(100) NOT NULL,
plan id INTEGER REFERENCES plans(id) DEFAULT 1,
xp INTEGER DEFAULT 0O,
level INTEGER DEFAULT 1,
streak days INTEGER DEFAULT O,
last scan date DATE,
stripe customer id VARCHAR(255),
created at TIMESTAMPTZ DEFAULT NOW(),
updated at TIMESTAMPTZ DEFAULT NOW()

- Planos
CREATE TABLE plans (
id SERIAL PRIMARY KEY,
name VARCHAR(50) NOT NULL, -- CONTENT PLACEHOLDER#39; freeCONTENT PLACEHOLDER#39;,
price cents INTEGER NOT NULL, -- 0, 1490 (R$14.90)
scan_limit daily INTEGER NOT NULL, -- 3, -1 (unlimited)
features JSONB DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;

- Produtos

CREATE TABLE products (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
barcode VARCHAR(20) UNIQUE NOT NULL,
name VARCHAR(500),
brand VARCHAR(200),
category VARCHAR(200),
ingredients text TEXT,
nutrition JSONB, - {CONTENT PLACEHOLDERquot;energy kcalCONTENT PLACEHOLDERquot;: 25
nutri score CHAR(1), - A-E
nova group SMALLINT, - 1-4
images JSONB, - {CONTENT PLACEHOLDERquot; frontCONTENT PLACEHOLDERquot;: CONTENT
allergens TEXTI[],
off data JSONB, -- Raw Open Food Facts response
scan_count INTEGER DEFAULT 0,
created at TIMESTAMPTZ DEFAULT NOW(),
updated at TIMESTAMPTZ DEFAULT NOW()

CREATE INDEX idx products barcode ON products(barcode);
CREATE INDEX idx products category ON products(category);

- Scans

CREATE TABLE scans (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
user id UUID REFERENCES users(id) ON DELETE CASCADE,
product id UUID REFERENCES products(id),
analysis id UUID REFERENCES analyses(id),
health score SMALLINT,
scanned at TIMESTAMPTZ DEFAULT NOW()

)3

CREATE INDEX idx scans user date ON scans(user id, scanned at DESC);

- Andlises IA

CREATE TABLE analyses (
id UUID PRIMARY KEY DEFAULT gen random uuid(),
product id UUID REFERENCES products(id),
profile hash VARCHAR(64), -- SHA-256 do perfil alimentar (para cache)
ingredients analysis JSONB, -- Array de andlises por ingrediente
health score SMALLINT,
score_breakdown JSONB, -- {CONTENT_PLACEHOLDERquot;naturalnessCONTENT PLACEHOLDERquot;: 2
problematic top3 TEXTI[],
summary TEXT,
alerts JSONB,
model version VARCHAR(50), -- CONTENT_PLACEHOLDERquot;gpt-40-mini-2024-07-18CONTENT PLACEHOLD
tokens used INTEGER,
created at TIMESTAMPTZ DEFAULT NOW()

)3

CREATE INDEX idx analyses product profile ON analyses(product id, profile hash);

- Perfis Alimentares
CREATE TABLE dietary profiles (

id UUID PRIMARY KEY DEFAULT gen random uuid(),
user _id UUID UNIQUE REFERENCES users(id) ON DELETE CASCADE,
allergies TEXT[] DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;,
intolerances TEXT[] DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;
diet VARCHAR(50),
avoid TEXT[] DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;,
goals TEXT[] DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;,
conditions TEXT[] DEFAULT CONTENT PLACEHOLDER#39;{}CONTENT PLACEHOLDER#39;,
updated at TIMESTAMPTZ DEFAULT NOW()

Fluxo Principal

Usudrio abre app (PWA)

\

\4
— Tela de Scan 1
| navigator.mediaDevices.getUserMedia({video: { \
\ facingMode: CONTENT PLACEHOLDERquot;environmentCONTENT PLACEHOLDERquot;
[1) \
\
L

ZXing-js detecta barcode em tempo real \
|

T
| barcode detectado (ex: CONTENT PLACEHOLDERquot;7891000100103CONTENT PLACEHOL
v

POST /api/vl/scan

{ CONTENT PLACEHOLDERquot;barcodeCONTENT PLACEHOLDERquot;: CONTENT PLACEHOLDERquot;789100

— Backend

RATE LIMIT CHECK
Redis: INCR user:{id}:scans:{date}
Se CONTENT PLACEHOLDERgt;= limite - 402 (upgrade para premium)
\
BUSCA PRODUTO (3 camadas) |
a) Redis GET product:{barcode} |
- HIT? Retorna cached (CONTENT PLACEHOLDER1lt; 5ms)
b) PostgreSQL SELECT * FROM products WHERE barcode=
- HIT? Retorna + atualiza Redis \
c) Open Food Facts API GET /api/v2/product/{barcode} |
- HIT? Persiste no DB + Redis
- MISS? Retorna CONTENT PLACEHOLDERquot;Produto ndo encontradoCONTENT PLACEHOLDERquot;

BUSCA ANALISE (cache por produto + perfil)
profile hash = SHA256 (user.dietary profile)
SELECT * FROM analyses

WHERE product id = X AND profile hash =Y
- HIT? Retorna cached
- MISS? Chama GPT-40-mini

. ANALISE IA (se cache miss)
OpenAI Chat Completion:
model: CONTENT PLACEHOLDERquot;gpt-40-miniCONTENT PLACEHOLDERquot;
response format: { type: CONTENT PLACEHOLDERquot;json objectCONTENT PLACEHOLDERquot; }
messages: [system prompt, user prompt] \
Parse JSON - Persiste em analyses \
\
CALCULA SCORE (se ndo veio da andlise) |
Combina: Nutri-Score + NOVA + IA + Nutricédo |

|
BUSCA ALTERNATIVAS
SELECT FROM products WHERE category = X \
AND health score CONTENT PLACEHOLDERgt; current score
ORDER BY health score DESC, scan count DESC \
LIMIT 5 \
|
|
\

REGISTRA SCAN

INSERT INTO scans (...)
UPDATE users SET xp = xp + 10
Verifica achievements

RETORNA RESPONSE

Frontend

— Resultado

Chocolate ao Leite XYZ
Marca ABC

Evitar

+ Contém GLUTEN (incompativel com seu perfil) |
e Alto teor de acglcar (52g/100g)

<7 INGREDIENTES

e Aclicar « Primeiro ingrediente = base
e Gordura vegetal hidrogenada « Trans
e Cacau « Natural

* Lecitina de soja « Emulsificante
[ver todos -]

\
\
\
\
\
\
\
\
\
\ ALERTAS
\
\
\
\
\
\
\
\
\
\

Sequéncia temporal (target CONTENT_PLACEHOLDERIt; 5s)

Etapa Tempo (cache hit) Tempo (cache miss)
Decodificacdo barcode (client) ~200ms ~200ms

Request -» Backend ~100ms ~100ms

Rate limit check (Redis) ~5ms ~5ms

Busca produto ~5ms (Redis) ~800ms (OFF API)
Busca/gera andlise 1A ~5ms (cache) ~2500ms (GPT)
Calcula score ~10ms ~10ms

Busca alternativas ~50ms ~50ms

Registra scan + XP ~20ms ~20ms

Response - Frontend ~100ms ~100ms

Render resultado ~200ms ~200ms

TOTAL ~700ms v ~4000ms

APIs Externas

Open Food Facts

e URL: https://world.openfoodfacts.org/api/v2/product/{barcode}.json
e Custo: Gratuita, open source

e Rate limit: 100 req/min (ser gentil)

e Cobertura: ~3M produtos, boa cobertura Brasil

e User-Agent obrigatério: Aletheia/1.0 (contato@aletheia.app)

e Fallback: Se produto ndo encontrado, permitir cadastro manual (v2.0)

OpenAl GPT-40-mini

e Endpoint: POST https://api.openai.com/vl/chat/completions
e Modelo: gpt-4o0-mini
e Custo estimado:
o Input: ~500 tokens/scan x $0.15/1M = $0.000075/scan
o Output: ~800 tokens/scan x $0.60/1M = $0.00048/scan
o Total: ~$0.00055/scan ~ R$0.003/scan
o 10K scans/dia = ~R$30/dia
e Timeout: 10 segundos

e Retry: 3x com exponential backoff (1s, 2s, 4s)

e Fallback: Andlise baseada em regras (lista de ingredientes conhecidos)

Stripe

e Uso: Assinaturas (Checkout + Customer Portal)
o Webhooks: invoice.paid , customer.subscription.updated , customer.subscription.deleted
e Planos:

o Free: R$0 (3 scans/dia)

o Premium: R$14,90/més (ilimitado + features extras)

Google Cloud Vision (fallback barcode)

e Uso: Apenas quando ZXing-js falha na decodificagao client-side

Endpoint: POST https://vision.googleapis.com/v1l/images:annotate

Custo: $1.50/1K imagens (primeiras 1K/més gratis)

Alternativa free: QuaggaJS como segundo decoder client-side

PWA CONTENT_PLACEHOLDERamp; Camera

Service Worker (next-pwa)

Camera CONTENT_PLACEHOLDERamp; Barcode Scanner

Manifest (PWA)

I Monetizacao Técnica

Planos
Feature Free Premium (R$14,90/més)
Scans por dia 3 llimitado
Histérico Ultimos 7 dias Completo
Andlise 1A Basica Detalhada + perfil
Alternativas Top 2 Top 5 + comparativo
Perfil alimentar Alergias apenas Completo (condicoes)
Export (CSV/PDF) X 4
Leaderboard X 2
Sem anuncios X Z

Fluxo Stripe

Sistema de Créditos

I Performance

Metas

Métrica

Scan =
resultado

TTFB (first
byte)

LCP

Bundle size

Lighthouse
PWA

API p95
latency

Uptime

Target

CONTENT_PLACEHOLDERIt; 5s (cold) / CONTENT_PLACEHOLDERIt; 1s
(cached)

CONTENT_PLACEHOLDERIt; 200ms

CONTENT_PLACEHOLDERIt; 2.5s

CONTENT_PLACEHOLDERIt; 150KB (gzipped)

CONTENT_PLACEHOLDERGgt; 90

CONTENT_PLACEHOLDERIt; 500ms (cached)

99.9%

Estratégia

Cache 3 camadas

Edge deploy (Vercel)

SSR + lazy load imagens

Tree shaking, dynamic
imports

Service worker, manifest,
HTTPS

Redis, connection pooling

Health checks, auto-restart

Estratégias de Cache

Otimizagoes Backend

e Connection pooling: SQLAlchemy async pool (min=5, max=20)

e Bulk operations: Batch insert para alternativas

o indices: barcode (B-tree), category (B-tree), scans por user+date
e Async everywhere: FastAPI + httpx (Open Food Facts) + asyncpg

e Streaming response: Para analises longas, usar SSE (Server-Sent Events)

I Design CONTENT_PLACEHOLDERamp; UX

Identidade Visual

Elemento Especificacao

Nome Aletheia (&GAn6sia = verdade)

Olho grego estilizado (Nazar/Mati) com iris em forma de

Logo barcode

Cores primarias Verde #16A34A (saude) + Branco #FFFFFF (clean)

Cores secundarias Cinza #6B7280 (texto) + Verde claro #DCFCE7
(backgrounds)

Cores de score #EF4444 - @ #F97316 - © #EAB308 -© #22C55E

Tipografia Inter (UI) + Plus Jakarta Sans (headings)

icones Lucide Icons (consistente, leve)

Bordas rounded-x1 (16px), sombras suaves

Espagcamento Grid 8px, padding generoso

Telas Principais

Micro-interacoes

e Scan detectado: Vibracao + flash verde + som sutil

e Score reveal: Animacéao circular de 0 até valor final (1.5s)

e Ingrediente tap: Expande com animagao suave (Framer Motion)
e Achievement unlocked: Toast animado com confetti

e Pull to refresh: Animacao do olho grego piscando

Roadmap

MVP — Semanas 1-3

Semana 1: Infraestrutura + Scanner - [] Setup monorepo (turborepo ou pasta separada) - [] Backend: FastAPI
boilerplate, auth JWT, migrations - [] Frontend: Next.js 14, PWA setup, layout base - [] Scanner: camera + ZXing-js
funcionando - [] Integracdo Open Food Facts (busca basica)

Semana 2: A + Core Features - [] Analise IA com GPT-40-mini - [] Score de saude (algoritmo v1) - [] Tela de
resultado completa - [] Cache Redis para produtos + analises - [] Historico basico (lista de scans)

Semana 3: Polish + Deploy - [] Design system (cores, tipografia, componentes) - [] Rate limiting (3 scans/dia free) - [
] Alternativas basicas - [] Error handling e loading states - [] Deploy: Vercel (front) + Railway (back) - [] Testes E2E

dos fluxos principais

Entregaveis MVP: - PWA funcional no celular - Scan - resultado com score + ingredientes explicados - 3 scans gratis
por dia - Histérico dos ultimos 7 dias

v1.0 — Semanas 4-6

o [_]Perfil alimentar completo

o [_JAlertas personalizados baseados no perfil
o [_]Stripe integration (premium)

o []Gamificagao (XP, streaks, badges)

e [_]Onboarding flow

e [_]Push notifications (Web Push API)

o [_]Offline mode (scans salvos localmente)

v2.0 — Semanas 7-10

e [_]Compartilhar resultado (social cards)

e [_]Comparar 2 produtos lado a lado

e [JLeaderboard semanal

e [JOCRde ingredientes (foto da lista quando sem barcode)
o []cadastro de produtos por usuarios

o [_JAPI publica para desenvolvedores

o [Jinternacionalizagao (PT-BR, EN, ES)

v3.0 — Futuro

[_JApp nativo (React Native ou Capacitor)

o [Jintegracdo com supermercados (precos)
o []Scan de cardapios de restaurantes

o [_|Diario alimentar com score diario

o [JRecomendacées de receitas saudaveis

o [Jintegracao com Apple Health / Google Fit

Estrutura de Diretorios

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:Fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

F— routers/
auth.py
scan.py
products.py
analysis.py
history.py
alternatives.py
profile.py
gamification.py
billing.py
— services/
auth service.py
scan_service.py
product service.py
al service.py
score service.py
alternatives service
credits service.py
gamification_service
— integrations/
— open food facts.py
— openai client.py
L— stripe client.py
— utils/
— cache.py
F— security.py
L— prompts.py

|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
]
|
|
L

— alembic/

— tests/

— Dockerfile

F— requirements.txt
L— pyproject.toml

frontend/

layout.tsx
page.tsx
scan/page.tsx
result/[id]/page.tsx
history/page.tsx
profile/page.tsx
premium/page.tsx

components/

F— ui/

— scanner/
— CameraView.tsx
L— BarcodeOverlay.t
result/
— ScoreGauge. tsx
— IngredientlList.t
— AlertCards.tsx
L— AlternativeCards
gamification/
— XPBar.tsx
L— BadgeGrid.tsx

\ — useBarcodeScan.ts
| | useAuth.ts
| L— useScan.ts
F— lib/
\ — api.ts
\ L— utils.ts
L— stores/
— authStore.ts
L— scanStore.ts
public/
— manifest.json
F— sw.js

L— icons/

API routes

Business logic

Py

- Py
External APIs

Migrations

Next.js App Router

Home
Scanner

Design system

SX

SX

.tsx

Axios instance

Zustand

I Estimativa de Custos (10K usuarios ativos)

Servico Custo/més

Free (hobby) ou $20 (pro)

Vercel (frontend)

Railway (backend + DB + Redis)
OpenAl GPT-40-mini (~30K scans/més)
Stripe (2.5% + fees)

Dominio

Total estimado

Break-even: ~25-30 assinantes premium (R$14,90 x 30 = R$447)

~$20-40

~R$90 (~$17)

Variavel

~R$40/ano

~R$250-400/més

"Aletheia — porque vocé merece saber a verdade sobre o que come.” ®

ALETHEIA

