
CARONTE — Manual Técnico v1.0

🚣 "O barqueiro que guia famílias pelo rio burocrático pós-óbito"

1. Visão Geral da Arquitetura

O CARONTE é uma aplicação web full-stack composta por:

Camada Tecnologia
Porta
Padrão

Frontend
Next.js 14 (App Router) + React 18 + Tailwind
CSS

3102

Backend FastAPI (Python 3.12) + SQLAlchemy Async 8102

Banco de Dados
PostgreSQL (produção) / SQLite
(desenvolvimento)

5432

Proxy Reverso Nginx + Cloudflare 80/443

Process
Manager

PM2 —

Diagrama de Arquitetura

[Cloudflare CDN/DNS]

 ↓

 [Nginx :80]

 ├── /api/* → FastAPI :8102

 └── /* → Next.js :3102

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 1/13

 ↓

 [PostgreSQL :5432]

2. Estrutura de Pastas

caronte/

├── backend/

│ ├── app/

│ │ ├── main.py # Entry point FastAPI

│ │ ├── __init__.py

│ │ ├── api/v1/ # Rotas da API

│ │ │ ├── auth.py # Autenticação (registro, login, /me)

│ │ │ ├── familias.py # CRUD famílias, membros, falecidos

│ │ │ ├── checklist.py # Checklist burocrático

│ │ │ ├── beneficios.py # Scanner de benefícios

│ │ │ ├── documentos.py # Geração de documentos PDF

│ │ │ └── dashboard.py # Dashboard consolidado

│ │ ├── core/

│ │ │ ├── config.py # Configurações (Pydantic Settings)

│ │ │ ├── database.py # Engine SQLAlchemy async

│ │ │ └── security.py # JWT, bcrypt, OAuth2

│ │ ├── models/ # Modelos SQLAlchemy

│ │ │ ├── usuario.py

│ │ │ ├── familia.py # Familia + MembroFamilia

│ │ │ ├── falecido.py

│ │ │ ├── checklist.py

│ │ │ ├── beneficio.py

│ │ │ └── documento.py

│ │ ├── schemas/

│ │ │ └── schemas.py # Pydantic schemas (request/response)

│ │ ├── services/

│ │ │ ├── checklist_engine.py # Geração automática de checklist

│ │ │ ├── beneficio_scanner.py # Scanner de benefícios elegíveis

│ │ │ └── document_generator.py # Geração de PDFs (ReportLab)

│ │ └── data/

│ │ └── checklist_templates.json # Templates de checklist

│ ├── uploads/ # PDFs gerados

│ ├── requirements.txt

│ └── seed_data.py

├── frontend/

│ ├── src/

│ │ ├── app/

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 2/13

│ │ │ ├── layout.js # Layout global

│ │ │ ├── page.js # Página inicial

│ │ │ ├── login/page.js

│ │ │ ├── registro/page.js

│ │ │ ├── dashboard/page.js

│ │ │ └── familia/[id]/

│ │ │ ├── page.js # Detalhe da família

│ │ │ ├── checklist/page.js

│ │ │ ├── beneficios/page.js

│ │ │ └── documentos/page.js

│ │ ├── components/

│ │ │ └── Sidebar.js

│ │ └── lib/

│ │ └── api.js # Cliente HTTP para a API

│ ├── package.json

│ ├── tailwind.config.js

│ └── postcss.config.js

├── docs/ # Documentação

├── start-backend.sh

└── start-frontend.sh

3. Modelos de Dados

3.1 Usuario

Campo Tipo Descrição

id Integer (PK) Auto-increment

nome String Nome completo

email String (unique) Email de login

senha_hash String Hash bcrypt

telefone String (nullable) Telefone

created_at DateTime Auto

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 3/13

3.2 Familia

Campo Tipo Descrição

id Integer (PK) Auto-increment

nome String Nome da família

usuario_id Integer (FK) Usuário responsável

created_at DateTime Auto

3.3 MembroFamilia

Campo Tipo Descrição

id Integer (PK) Auto-increment

familia_id Integer (FK) Família

nome String Nome do membro

parentesco String Grau de parentesco

cpf, telefone, email String (nullable) Dados de contato

3.4 Falecido

Campo Tipo Descrição

id Integer (PK) Auto-increment

familia_id Integer (FK) Família

nome String Nome completo

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 4/13

Campo Tipo Descrição

cpf
String
(nullable)

CPF

data_nascimento Date (nullable) Nascimento

data_obito Date Data do óbito

causa_obito
String
(nullable)

Causa

tipo_vinculo String
empregado, aposentado, autonomo,
servidor

empregador
String
(nullable)

Nome do empregador

tinha_carteira_assinada Integer 0/1

tinha_fgts Integer 0/1

era_aposentado Integer 0/1

tinha_seguro_vida Integer 0/1

tinha_imoveis Integer 0/1

tinha_veiculos Integer 0/1

salario_estimado Float (nullable) Último salário

3.5 ChecklistItem

Campo Tipo Descrição

id Integer (PK) Auto-increment

familia_id Integer (FK) Família

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 5/13

Campo Tipo Descrição

falecido_id Integer (FK) Falecido

titulo String Título da tarefa

descricao Text (nullable) Descrição detalhada

fase String imediato, primeira_semana, 30_dias, 60_dias

categoria String certidoes, inss, fgts, inventario...

status String pendente, andamento, concluido

prazo_dias Integer (nullable) Prazo em dias

ordem Integer Ordem de execução

dependencia_id Integer (nullable) Item que precede

3.6 Beneficio

Campo Tipo Descrição

id Integer (PK) Auto-increment

familia_id Integer (FK) Família

falecido_id Integer (FK) Falecido

tipo String fgts, pis, pensao_morte, seguro_vida, rescisao

nome String Nome do benefício

descricao String (nullable) Descrição

status String identificado, em_processo, sacado

valor_estimado Float (nullable) Valor estimado

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 6/13

Campo Tipo Descrição

valor_sacado Float (nullable) Valor efetivamente sacado

3.7 Documento

Campo Tipo Descrição

id Integer (PK) Auto-increment

familia_id Integer (FK) Família

falecido_id
Integer (FK,
nullable)

Falecido

tipo String
procuracao, requerimento_fgts,
peticao_pensao

nome String Nome do documento

arquivo_path String (nullable) Caminho do PDF

status String gerado, enviado, aprovado

4. API — Endpoints

Base URL: /api/v1

4.1 Autenticação

Método Endpoint Descrição Auth

POST /auth/registro Criar conta ❌

POST /auth/login Login (OAuth2 form) → JWT ❌

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 7/13

Método Endpoint Descrição Auth

GET /auth/me Dados do usuário logado ✅

4.2 Famílias

Método Endpoint Descrição Auth

GET /familias/ Listar famílias do usuário ✅

POST /familias/ Criar família ✅

GET /familias/{id} Detalhe da família ✅

POST /familias/{id}/membros Adicionar membro ✅

GET /familias/{id}/membros Listar membros ✅

POST /familias/{id}/falecido

Registrar falecido (gera checklist +
benefícios)

✅

GET /familias/{id}/falecidos Listar falecidos ✅

4.3 Checklist

Método Endpoint Descrição Auth

GET /familias/{id}/checklist/ Listar itens do checklist ✅

PUT /familias/{id}/checklist/{item_id} Atualizar status ✅

GET /familias/{id}/checklist/proximo Próximo passo recomendado ✅

4.4 Benefícios

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 8/13

Método Endpoint Descrição Auth

GET /familias/{id}/beneficios/ Listar benefícios ✅

POST /familias/{id}/beneficios/scan Re-escanear benefícios ✅

4.5 Documentos

Método Endpoint Descrição Auth

GET /familias/{id}/documentos/ Listar documentos ✅

POST /familias/{id}/documentos/gerar Gerar PDF ✅

GET /familias/{id}/documentos/{doc_id}/download Download PDF ✅

Tipos de documento suportados: procuracao , requerimento_fgts , peticao_pensao

4.6 Dashboard

Método Endpoint Descrição Auth

GET /dashboard/ Resumo consolidado do usuário ✅

5. Autenticação

Método: JWT Bearer Token (OAuth2 Password Flow)

Hash: bcrypt via passlib

Algoritmo: HS256

Expiração: 1440 minutos (24h)

Header: Authorization: Bearer <token>

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 9/13

6. Variáveis de Ambiente

Variável Descrição Padrão

DATABASE_URL

URL de conexão
ao banco

sqlite+aiosqlite:///./caronte.db

SECRET_KEY

Chave secreta
para JWT

caronte-secret-key-change-in-

production

ALGORITHM Algoritmo JWT HS256

ACCESS_TOKEN_EXPIRE_MINUTES

Expiração do
token

1440

UPLOAD_DIR

Diretório de
uploads

./uploads

Produção (PostgreSQL):

DATABASE_URL=postgresql+asyncpg://caronte:Caronte2026!@localhost:5432/caronte

⚠️ Para PostgreSQL, adicionar asyncpg ao requirements.txt e usar driver
postgresql+asyncpg://

7. Requisitos de Sistema

Backend

Python 3.12+

Dependências: FastAPI, SQLAlchemy, aiosqlite/asyncpg, python-jose, passlib,
reportlab, pydantic-settings

Frontend

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 10/13

Node.js 18+

Next.js 14, React 18, Tailwind CSS, lucide-react

Produção

Ubuntu 22.04+ / Debian 12+

PostgreSQL 15+

Nginx

PM2 (Node.js process manager)

Cloudflare (DNS + CDN)

8. Deploy de Produção

8.1 Backend

cd /opt/caronte/backend

python3 -m venv .venv

source .venv/bin/activate

pip install -r requirements.txt

pip install asyncpg # driver PostgreSQL

Criar .env

echo 'DATABASE_URL=postgresql+asyncpg://caronte:Caronte2026!@localhost:5432/caronte' > .env

echo 'SECRET_KEY=<gerar-chave-segura>' >> .env

Iniciar com PM2

pm2 start "source .venv/bin/activate && uvicorn app.main:app --host 0.0.0.0 --port 8102" --n

8.2 Frontend

cd /opt/caronte/frontend

npm install

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 11/13

npm run build # NUNCA usar next dev em produção

pm2 start "npm start -- -p 3102" --name caronte-frontend

8.3 Nginx

server {

 listen 80;

 server_name caronte.aivertice.com;

 location /api/ {

 proxy_pass http://127.0.0.1:8102/;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

 location / {

 proxy_pass http://127.0.0.1:3102;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

}

9. Serviços Inteligentes

9.1 Checklist Engine

Ao registrar um falecido, o sistema gera automaticamente um checklist burocrático
personalizado baseado no perfil (tipo de vínculo, tinha FGTS, era aposentado, etc.). Os
templates são carregados de checklist_templates.json e filtrados por condições.

9.2 Benefício Scanner

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 12/13

Analisa o perfil do falecido e identifica automaticamente benefícios elegíveis: - FGTS (se
tinha FGTS) — estimativa: 3.5x salário - PIS/PASEP (se tinha carteira assinada) —
estimativa: 0.8x salário - Pensão por Morte (sempre) — estimativa: 12x salário - Seguro
de Vida (se tinha) — estimativa: 24x salário - Verbas Rescisórias (se tinha carteira
assinada) — estimativa: 2x salário

9.3 Document Generator

Gera PDFs profissionais via ReportLab: - Procuração — representação perante órgãos -
Requerimento FGTS — saque por falecimento (Lei 8.036/90) - Petição Pensão por
Morte — requerimento INSS (Lei 8.213/91)

Documento gerado em 08/02/2026 — CARONTE v1.0

2/9/26, 6:36 AM

file:///home/kernelpanic/projetos_jarvis/caronte/docs/CARONTE-Manual-Tecnico.html 13/13

