
MANUAL TÉCNICO
Documentação Técnica Completa

K I S L A N S K I I N D U S T R I E S | A I V E R T I C E

F e v e r e i r o 2 0 2 6 · v 2 . 0

2

SUMÁRIO

HEFESTO — Manual Técnico

1. Visão Geral da Arquitetura

2. Stack Completa

3. Estrutura de Pastas

3.1 Backend

3.2 Frontend

4. Modelo de Dados

4.1 Diagrama de Entidades

4.2 Descrição das Entidades

4.3 Perfis de Acesso (RBAC)

5. API — Endpoints

5.1 Autenticação (/api/auth)

5.2 Usuários (/api/users)

5.3 Locais (/api/locais)

5.4 Centros de Custo (/api/centros-custo)

5.5 Categorias (/api/categorias)

5.6 Fornecedores (/api/fornecedores)

5.7 Demandas (/api/demandas)

5.8 Propostas (/api/propostas)

5.9 Orçamento (/api/orcamento)

5.10 Workflow (/api/workflow)

5.11 Dashboard (/api/dashboard)

5.12 Ordens de Serviço (/api/ordens-servico)

5.13 Alertas (/api/alertas)

5.14 ESG / Sustentabilidade (/api/esg)

5.15 KPIs — Indicadores de Performance (/api/kpis)

5.16 Auditoria e Compliance (/api/audit)

5.17 Importação de Dados (/api/import)

3

5.18 Relatórios Automatizados (/api/relatorios)

5.19 Metas e Progresso (/api/metas)

5.20 Alertas Inteligentes (/api/alertas)

6. Autenticação e Autorização

6.1 Fluxo JWT

6.2 Guards NestJS

7. Workflow de Aprovação

7.1 Máquina de Estados

7.2 Alçadas de Aprovação

8. Como Rodar Localmente

8.1 Pré-requisitos

8.2 Backend

8.3 Frontend

8.4 Acesso Inicial

9. Deploy em Produção

9.1 Infraestrutura

9.2 Nginx Config

9.3 PM2

10. Variáveis de Ambiente

Backend (.env)

Frontend (.env)

4

H E F E S T O — M A N U A L T É C N I C O V2 . 0

HEFESTO — Manual Técnico

Sistema de Controle Orçamentário para Facilities

Versão 2.0 | Fevereiro 2025

1. Visão Geral da Arquitetura

O HEFESTO é uma aplicação web fullstack composta por:

Backend: API REST em NestJS (Node.js) com TypeORM

Frontend: SPA em React + TypeScript com Vite

Banco de Dados: SQLite (desenvolvimento) / PostgreSQL (produção)

Autenticação: JWT com RBAC (Role-Based Access Control)

┌─────────────────┐ HTTP/REST ┌─────────────────┐

│ React SPA │ ◄──────────────► │ NestJS API │

│ (Vite) │ JWT Bearer │ (TypeORM) │

│ Port 5173 │ │ Port 3000 │

└─────────────────┘ └────────┬────────┘

 │

 ┌────────▼────────┐

 │ SQLite / PG │

 └─────────────────┘

5

2. Stack Completa

COMPONENTE TECNOLOGIA VERSÃO

Runtime Node.js 22.x LTS

Backend Framework NestJS 10.x

ORM TypeORM 0.3.x

Frontend Framework React 18.x

Build Tool Vite 5.x

Linguagem TypeScript 5.x

UI Components Tailwind CSS 3.x

BD Desenvolvimento SQLite3 5.x

BD Produção PostgreSQL 16.x

Auth @nestjs/jwt + passport 10.x

HTTP Client Axios 1.x

Validação class-validator 0.14.x

Documentação API @nestjs/swagger 7.x

6

3. Estrutura de Pastas

3.1 Backend

backend/

├── src/

│ ├── main.ts # Bootstrap da aplicação

│ ├── app.module.ts # Módulo raiz

│ ├── common/ # Guards, decorators, pipes, interceptors

│ │ ├── guards/

│ │ │ ├── jwt-auth.guard.ts

│ │ │ └── roles.guard.ts

│ │ ├── decorators/

│ │ │ ├── roles.decorator.ts

│ │ │ └── current-user.decorator.ts

│ │ └── interceptors/

│ │ └── audit.interceptor.ts

│ ├── database/ # Configuração TypeORM, migrations, seeds

│ │ ├── database.module.ts

│ │ ├── migrations/

│ │ └── seeds/

│ └── modules/

│ ├── auth/ # Autenticação JWT, login, refresh token

│ │ ├── auth.controller.ts

│ │ ├── auth.service.ts

│ │ ├── auth.module.ts

│ │ ├── strategies/

│ │ │ └── jwt.strategy.ts

│ │ └── dto/

│ ├── users/ # CRUD de usuários e perfis

│ │ ├── users.controller.ts

│ │ ├── users.service.ts

│ │ ├── entities/

│ │ │ ├── usuario.entity.ts

│ │ │ └── perfil.entity.ts

│ │ └── dto/

│ ├── locais/ # Gestão de locais/unidades

│ ├── centros-custo/ # Centros de custo vinculados a locais

│ ├── categorias/ # Categorias de serviço

│ ├── fornecedores/ # Cadastro de fornecedores e certidões

│ ├── demandas/ # Abertura e gestão de demandas

│ ├── propostas/ # Recebimento e comparação de propostas

│ ├── orcamento/ # Orçamento planejado vs realizado

│ ├── workflow/ # Máquina de estados de aprovação

│ ├── dashboard/ # Indicadores e relatórios

│ ├── ordens-servico/ # Emissão e acompanhamento de OS

│ ├── esg/ # Métricas ESG e sustentabilidade

7

│ ├── kpis/ # Indicadores de performance

│ ├── audit/ # Auditoria e compliance avançado

│ ├── import/ # Importação de dados Excel/CSV

│ ├── relatorios/ # Relatórios automatizados

│ ├── metas/ # Metas e acompanhamento de progresso

│ └── alertas-inteligentes/ # Configuração e verificação de alertas

├── test/

├── nest-cli.json

├── tsconfig.json

└── package.json

8

3.2 Frontend

frontend/

├── src/

│ ├── main.tsx # Entry point

│ ├── App.tsx # Router + Layout

│ ├── assets/ # Imagens, ícones

│ ├── components/ # Componentes reutilizáveis

│ │ ├── Layout/

│ │ ├── Sidebar/

│ │ ├── Header/

│ │ ├── DataTable/

│ │ ├── StatusBadge/

│ │ └── Charts/

│ ├── pages/

│ │ ├── Login.tsx # Tela de autenticação

│ │ ├── Dashboard.tsx # Painel de indicadores

│ │ ├── Demandas.tsx # Lista de demandas com filtros

│ │ ├── Landing.tsx # Página inicial / nova demanda

│ │ ├── Fornecedores.tsx # Gestão de fornecedores

│ │ ├── Orcamentos.tsx # Orçamento planejado vs realizado

│ │ ├── OrdensServico.tsx # Ordens de serviço

│ │ ├── Relatorios.tsx # Relatórios gerenciais

│ │ ├── Usuarios.tsx # Administração de usuários

│ │ ├── ESG.tsx # Dashboard ESG e métricas ambientais

│ │ ├── KPIs.tsx # Painel de indicadores de performance

│ │ ├── Auditoria.tsx # Logs de auditoria e compliance

│ │ ├── Importacao.tsx # Upload de planilhas Excel/CSV

│ │ ├── Metas.tsx # Metas e progresso por centro de custo

│ │ └── Alertas.tsx # Configuração de alertas inteligentes

│ ├── services/ # Axios clients e API calls

│ │ └── api.ts

│ ├── types/ # Interfaces TypeScript

│ └── index.css # Tailwind directives

├── vite.config.ts

├── tailwind.config.js

├── tsconfig.json

└── package.json

4. Modelo de Dados

4.1 Diagrama de Entidades

O sistema possui 21 entidades principais:

9

perfis ──< usuarios ──< demandas ──< itens_linha

 │ │

 │ ├──< propostas

 │ │

 │ ├──< workflow_aprovacao

 │ │

 │ └──< ordens_servico ──< avaliacoes

 │

 └──< audit_log

locais ──< centros_custo ──< orcamento_planejado

categorias ──< demandas

fornecedores ──< certidoes

fornecedores ──< propostas

alertas (standalone)

locais ──< esg_metricas

locais ──< esg_metas

centros_custo ──< kpis

centros_custo ──< metas

centros_custo ──< alertas_config

categorias ──< alertas_config

10

4.2 Descrição das Entidades

ENTIDADE DESCRIÇÃO CAMPOS PRINCIPAIS

1 perfis Perfis de acesso

(RBAC)

id, nome, descricao, permissoes (JSON)

2 usuarios Usuários do

sistema

id, nome, email, senha_hash, perfil_id, ativo,

ultimo_acesso

3 locais Unidades/edifícios id, nome, endereco, cidade, estado, cnpj,

ativo

4 centros_custo Centros de custo

por local

id, codigo, descricao, local_id, ativo

5 categorias Categorias de

serviço

id, nome, descricao, sla_dias, ativo

6 fornecedores Cadastro de

fornecedores

id, razao_social, cnpj, contato, email,

telefone, ativo, rating

7 certidoes Certidões de

fornecedores

id, fornecedor_id, tipo, arquivo_url, validade,

status

8 orcamento_planejado Budget por centro

de custo/ano

id, centro_custo_id, ano, mes,

valor_planejado, valor_realizado

9 demandas Demandas de

serviço

id, titulo, descricao, local_id, categoria_id,

solicitante_id, status, prioridade,

valor_estimado, created_at

10 itens_linha Itens detalhados da

demanda

id, demanda_id, descricao, quantidade,

unidade, valor_unitario

11 propostas Propostas de

fornecedores

id, demanda_id, fornecedor_id, valor_total,

arquivo_url, data_validade, status,

observacoes

12 workflow_aprovacao Etapas de

aprovação

id, demanda_id, etapa, aprovador_id, status,

comentario, data_acao

11

ENTIDADE DESCRIÇÃO CAMPOS PRINCIPAIS

13 ordens_servico Ordens de serviço

emitidas

id, demanda_id, proposta_id, numero_os,

data_inicio, data_fim_prevista, data_fim_real,

status

14 avaliacoes Avaliação pós-

execução

id, ordem_servico_id, avaliador_id, nota,

comentario, created_at

15 audit_log Log de auditoria id, usuario_id, acao, entidade, entidade_id,

dados_antes, dados_depois, ip, created_at

16 alertas Notificações e

alertas

id, usuario_id, tipo, mensagem, lido,

referencia_tipo, referencia_id, created_at

17 esg_metricas Métricas

ambientais ESG

id, local_id, tipo

(energia/agua/residuos/emissoes_co2), valor,

unidade_medida, periodo, observacoes,

created_at

18 esg_metas Metas ESG id, local_id, tipo, descricao, valor_alvo,

valor_atual, percentual_atingido, status,

prazo, created_at

19 kpis Indicadores de

performance

calculados

id, nome, valor, unidade, status_semaforo,

centro_custo_id, periodo, calculated_at

20 metas Metas por centro

de custo

id, centro_custo_id, tipo

(orcamento/operacional/esg), descricao,

valor_alvo, valor_atual, percentual_atingido,

status, prazo, created_at

21 alertas_config Configuração de

alertas inteligentes

id, tipo, centro_custo_id, categoria_id,

limite_percentual, notificar_usuarios (JSON),

ativo, created_at

12

4.3 Perfis de Acesso (RBAC)

PERFIL PERMISSÕES

Admin Acesso total ao sistema, gestão de usuários e configurações

Gestor Facilities CRUD de demandas, fornecedores, propostas, OS; aprovação nível 1

Aprovador Financeiro Aprovação nível 2 (financeiro), visualização de orçamento

Diretoria Aprovação nível 3 (alçada máxima), dashboard executivo

Solicitante Abertura de demandas, acompanhamento do próprio pedido

Fornecedor Envio de propostas, acompanhamento de OS atribuídas

5. API — Endpoints

5.1 Autenticação (/api/auth)

MÉTODO ROTA DESCRIÇÃO

POST /api/auth/login Login com email/senha → JWT

POST /api/auth/refresh Renovar token

POST /api/auth/logout Invalidar token

GET /api/auth/me Dados do usuário logado

POST /api/auth/forgot-password Solicitar reset de senha

POST /api/auth/reset-password Resetar senha com token

13

5.2 Usuários (/api/users)

MÉTODO ROTA DESCRIÇÃO

GET /api/users Listar usuários (paginado)

GET /api/users/:id Detalhes do usuário

POST /api/users Criar usuário

PATCH /api/users/:id Atualizar usuário

DELETE /api/users/:id Desativar usuário

GET /api/perfis Listar perfis

5.3 Locais (/api/locais)

MÉTODO ROTA DESCRIÇÃO

GET /api/locais Listar locais

GET /api/locais/:id Detalhes do local

POST /api/locais Criar local

PATCH /api/locais/:id Atualizar local

DELETE /api/locais/:id Desativar local

14

5.4 Centros de Custo (/api/centros-custo)

MÉTODO ROTA DESCRIÇÃO

GET /api/centros-custo Listar centros de custo

GET /api/centros-custo/:id Detalhes

POST /api/centros-custo Criar centro de custo

PATCH /api/centros-custo/:id Atualizar

DELETE /api/centros-custo/:id Desativar

5.5 Categorias (/api/categorias)

MÉTODO ROTA DESCRIÇÃO

GET /api/categorias Listar categorias

GET /api/categorias/:id Detalhes

POST /api/categorias Criar categoria

PATCH /api/categorias/:id Atualizar

DELETE /api/categorias/:id Desativar

15

5.6 Fornecedores (/api/fornecedores)

MÉTODO ROTA DESCRIÇÃO

GET /api/fornecedores Listar fornecedores

GET /api/fornecedores/:id Detalhes com certidões

POST /api/fornecedores Cadastrar fornecedor

PATCH /api/fornecedores/:id Atualizar fornecedor

DELETE /api/fornecedores/:id Desativar

POST /api/fornecedores/:id/certidoes Upload de certidão

GET /api/fornecedores/:id/certidoes Listar certidões

DELETE /api/fornecedores/:id/certidoes/:certidaoId Remover certidão

16

5.7 Demandas (/api/demandas)

MÉTODO ROTA DESCRIÇÃO

GET /api/demandas Listar demandas (filtros: status, local,

categoria, período)

GET /api/demandas/:id Detalhes completos da demanda

POST /api/demandas Criar nova demanda

PATCH /api/demandas/:id Atualizar demanda

DELETE /api/demandas/:id Cancelar demanda

POST /api/demandas/:id/itens Adicionar item de linha

PATCH /api/demandas/:id/itens/:itemId Atualizar item

DELETE /api/demandas/:id/itens/:itemId Remover item

POST /api/demandas/:id/enviar-

cotacao

Enviar para cotação

GET /api/demandas/:id/comparativo Comparativo de propostas

17

5.8 Propostas (/api/propostas)

MÉTODO ROTA DESCRIÇÃO

GET /api/propostas Listar propostas

GET /api/propostas/:id Detalhes da proposta

POST /api/propostas Submeter proposta (fornecedor)

PATCH /api/propostas/:id Atualizar proposta

DELETE /api/propostas/:id Retirar proposta

POST /api/propostas/:id/aceitar Aceitar proposta

POST /api/propostas/:id/rejeitar Rejeitar proposta

POST /api/propostas/:id/ocr Processar OCR do arquivo

5.9 Orçamento (/api/orcamento)

MÉTODO ROTA DESCRIÇÃO

GET /api/orcamento Orçamento geral (filtros: ano, local, centro_custo)

GET /api/orcamento/:id Detalhes da linha orçamentária

POST /api/orcamento Criar linha orçamentária

PATCH /api/orcamento/:id Atualizar valores

GET /api/orcamento/resumo Resumo planejado vs realizado

GET /api/orcamento/projecao Projeção de gastos

18

5.10 Workflow (/api/workflow)

MÉTODO ROTA DESCRIÇÃO

GET /api/workflow/pendentes Aprovações pendentes do usuário logado

GET /api/workflow/demanda/:demandaId Histórico de aprovações da demanda

POST /api/workflow/aprovar Aprovar etapa

POST /api/workflow/rejeitar Rejeitar etapa

POST /api/workflow/devolver Devolver para correção

GET /api/workflow/alçadas Consultar alçadas configuradas

5.11 Dashboard (/api/dashboard)

MÉTODO ROTA DESCRIÇÃO

GET /api/dashboard/indicadores KPIs gerais

GET /api/dashboard/demandas-por-status Demandas agrupadas por status

GET /api/dashboard/gastos-por-local Gastos por unidade

GET /api/dashboard/gastos-por-categoria Gastos por categoria

GET /api/dashboard/evolucao-mensal Série temporal de gastos

GET /api/dashboard/top-fornecedores Ranking de fornecedores

GET /api/dashboard/sla Indicadores de SLA

19

5.12 Ordens de Serviço (/api/ordens-servico)

MÉTODO ROTA DESCRIÇÃO

GET /api/ordens-servico Listar OS

GET /api/ordens-servico/:id Detalhes da OS

POST /api/ordens-servico Emitir OS

PATCH /api/ordens-servico/:id Atualizar OS

POST /api/ordens-servico/:id/iniciar Marcar início da execução

POST /api/ordens-servico/:id/concluir Marcar conclusão

POST /api/ordens-servico/:id/avaliar Avaliar serviço prestado

5.13 Alertas (/api/alertas)

MÉTODO ROTA DESCRIÇÃO

GET /api/alertas Listar alertas do usuário

PATCH /api/alertas/:id/lido Marcar como lido

DELETE /api/alertas/:id Remover alerta

20

5.14 ESG / Sustentabilidade (/api/esg)

MÉTODO ROTA DESCRIÇÃO

GET /api/esg/metricas Listar métricas ambientais (filtros: unidade,

período, tipo)

POST /api/esg/metricas Registrar métrica ambiental

PATCH /api/esg/metricas/:id Atualizar métrica

DELETE /api/esg/metricas/:id Remover métrica

GET /api/esg/dashboard Dashboard consolidado ESG por unidade/período

GET /api/esg/metas Listar metas ESG

POST /api/esg/metas Criar meta ESG

PATCH /api/esg/metas/:id Atualizar meta ESG

GET /api/esg/metas/:id/progresso Progresso da meta ESG

Exemplo — POST /api/esg/metricas :

21

// Request

{

 "local_id": 3,

 "tipo": "energia",

 "valor": 12500.50,

 "unidade_medida": "kWh",

 "periodo": "2025-06",

 "observacoes": "Consumo sede administrativa"

}

// Response 201

{

 "id": 42,

 "local_id": 3,

 "tipo": "energia",

 "valor": 12500.50,

 "unidade_medida": "kWh",

 "periodo": "2025-06",

 "created_at": "2025-06-30T14:00:00Z"

}

Tipos de métricas suportados: energia (kWh), agua (m³), residuos (kg), emissoes_co2

(tCO₂e).

5.15 KPIs — Indicadores de Performance (/api/kpis)

MÉTODO ROTA DESCRIÇÃO

GET /api/kpis Listar KPIs calculados (filtros: categoria, ano, centro_custo)

GET /api/kpis/dashboard Dashboard de KPIs com status semáforo

KPIs calculados automaticamente:

22

KPI FÓRMULA VERDE AMARELO VERMELHO

% Orçamento

Consumido

realizado / planejado × 100 ≤ 80% 81–100% > 100%

Tempo Médio de OS média(data_fim_real -

data_inicio)

≤ SLA SLA+20% > SLA+20%

Rating Fornecedores média das avaliações ≥ 4.0 3.0–3.9 < 3.0

Taxa Conclusão

Demandas

concluídas / total × 100 ≥ 90% 70–89% < 70%

Exemplo — GET /api/kpis/dashboard :

// Response 200

{

 "periodo": "2025-06",

 "kpis": [

 {

 "nome": "orcamento_consumido",

 "valor": 78.5,

 "unidade": "%",

 "status": "verde",

 "centro_custo": "ADM-001"

 },

 {

 "nome": "tempo_medio_os",

 "valor": 12.3,

 "unidade": "dias",

 "status": "amarelo",

 "centro_custo": "ADM-001"

 }

]

}

23

5.16 Auditoria e Compliance (/api/audit)

MÉTODO ROTA DESCRIÇÃO

GET /api/audit/logs Trilha de auditoria completa (filtros: usuario,

entidade, período, ação)

GET /api/audit/compliance-

report

Relatório de conformidade por período

GET /api/audit/export Exportação de logs em CSV ou JSON (?

format=csv\|json)

Exemplo — GET /api/audit/logs?entidade=demandas&periodo_inicio=2025-06-01 :

// Response 200

{

 "total": 245,

 "page": 1,

 "data": [

 {

 "id": 1023,

 "usuario": "joao.silva@empresa.com",

 "acao": "UPDATE",

 "entidade": "demandas",

 "entidade_id": 87,

 "dados_antes": { "status": "EM_COTACAO" },

 "dados_depois": { "status": "PROPOSTAS_RECEBIDAS" },

 "ip": "192.168.1.50",

 "created_at": "2025-06-15T10:32:00Z"

 }

]

}

5.17 Importação de Dados (/api/import)

MÉTODO ROTA DESCRIÇÃO

POST /api/import/excel Upload de planilha Excel/CSV com validação automática

Tipos de importação: orcamento , demandas .

24

Exemplo — POST /api/import/excel (multipart/form-data):

// Request: file=planilha.xlsx, tipo=orcamento

// Response 200

{

 "status": "success",

 "registros_importados": 48,

 "registros_com_erro": 2,

 "erros": [

 { "linha": 15, "campo": "valor_planejado", "mensagem": "Valor inválido" },

 { "linha": 32, "campo": "centro_custo_id", "mensagem": "Centro de custo não enco

]

}

5.18 Relatórios Automatizados (/api/relatorios)

MÉTODO ROTA DESCRIÇÃO

GET /api/relatorios/orcamento-mensal Relatório de orçamento mensal (filtros:

ano, mês, local)

GET /api/relatorios/demandas-periodo Demandas por período com status e

valores

GET /api/relatorios/fornecedores-

ranking

Ranking de fornecedores com nota, valor e

volume

GET /api/relatorios/os-performance Performance de OS (SLA, tempo médio,

conclusão)

Todos os relatórios suportam ?format=json|csv|pdf .

Exemplo — GET /api/relatorios/fornecedores-ranking?ano=2025&limit=10 :

25

// Response 200

{

 "periodo": "2025",

 "ranking": [

 {

 "posicao": 1,

 "fornecedor": "TechServ Ltda",

 "rating": 4.8,

 "total_os": 23,

 "valor_total": 187500.00,

 "sla_cumprido": 95.6

 }

]

}

5.19 Metas e Progresso (/api/metas)

MÉTODO ROTA DESCRIÇÃO

GET /api/metas Listar metas (filtros: centro_custo, tipo, status)

POST /api/metas Criar meta

PATCH /api/metas/:id Atualizar meta

DELETE /api/metas/:id Remover meta

GET /api/metas/progresso Progresso geral de todas as metas

GET /api/metas/:id/progresso Progresso de meta específica

Tipos de meta: orcamento , operacional , esg .

Status: em_andamento , atingida , atrasada .

Exemplo — POST /api/metas :

26

// Request

{

 "centro_custo_id": 5,

 "tipo": "orcamento",

 "descricao": "Reduzir gastos com manutenção em 10%",

 "valor_alvo": 90,

 "unidade": "%",

 "prazo": "2025-12-31"

}

// Response 201

{

 "id": 12,

 "centro_custo_id": 5,

 "tipo": "orcamento",

 "descricao": "Reduzir gastos com manutenção em 10%",

 "valor_alvo": 90,

 "valor_atual": 0,

 "percentual_atingido": 0,

 "status": "em_andamento",

 "prazo": "2025-12-31",

 "created_at": "2025-02-09T15:00:00Z"

}

5.20 Alertas Inteligentes (/api/alertas)

Nota: Os endpoints abaixo complementam os alertas básicos da seção 5.13 com

configuração avançada e verificação automática.

MÉTODO ROTA DESCRIÇÃO

POST /api/alertas/configurar Configurar regra de alerta inteligente

GET /api/alertas/configurar Listar configurações de alertas

PATCH /api/alertas/configurar/:id Atualizar configuração

DELETE /api/alertas/configurar/:id Remover configuração

POST /api/alertas/verificar Disparar verificação manual de todos os alertas

Tipos de alerta: orcamento_excedido , certidao_vencendo , os_atrasada , meta_em_risco .

27

Exemplo — POST /api/alertas/configurar :

// Request

{

 "tipo": "orcamento_excedido",

 "centro_custo_id": 5,

 "limite_percentual": 85,

 "notificar_usuarios": [1, 3, 7],

 "ativo": true

}

// Response 201

{

 "id": 8,

 "tipo": "orcamento_excedido",

 "centro_custo_id": 5,

 "limite_percentual": 85,

 "notificar_usuarios": [1, 3, 7],

 "ativo": true,

 "created_at": "2025-02-09T15:00:00Z"

}

Total: 95 endpoints

6. Autenticação e Autorização

6.1 Fluxo JWT

1. Usuário faz POST /api/auth/login com email e senha

2. Backend valida credenciais e retorna { accessToken, refreshToken }

3. Frontend armazena tokens e envia Authorization: Bearer <accessToken> em todas as

requests

4. Token expira em 1h; refresh token expira em 7d

5. Frontend usa /api/auth/refresh para renovar automaticamente

6.2 Guards NestJS

@UseGuards(JwtAuthGuard, RolesGuard)

@Roles('admin', 'gestor_facilities')

@Get('demandas')

findAll() { ... }

28

JwtAuthGuard: valida o token JWT

RolesGuard: verifica se o perfil do usuário está na lista de roles permitidas

@CurrentUser(): decorator customizado que injeta o usuário logado

7. Workflow de Aprovação

7.1 Máquina de Estados

RASCUNHO → EM_ESCOPO → EM_COTAÇÃO → PROPOSTAS_RECEBIDAS

 → EM_COMPARAÇÃO → AGUARDANDO_APROVAÇÃO → APROVADA

 → OS_EMITIDA → EM_EXECUÇÃO → CONCLUÍDA → AVALIADA

Estados alternativos:

 AGUARDANDO_APROVAÇÃO → REJEITADA

 AGUARDANDO_APROVAÇÃO → DEVOLVIDA → EM_ESCOPO

 Qualquer estado → CANCELADA

7.2 Alçadas de Aprovação

FAIXA DE VALOR APROVADOR

Até R$ 5.000 Gestor Facilities

R$ 5.001 — R$ 50.000 Gestor Facilities + Aprovador Financeiro

R$ 50.001 — R$ 200.000 Gestor + Financeiro + Diretoria

Acima de R$ 200.000 Gestor + Financeiro + Diretoria + CEO

Cada etapa gera um registro em workflow_aprovacao com timestamp, aprovador e comentário.

8. Como Rodar Localmente

8.1 Pré-requisitos

Node.js 22.x

npm 10.x

29

Git

8.2 Backend

cd backend

cp .env.example .env # Ajustar variáveis

npm install

npm run build

npm run migration:run # Criar tabelas

npm run seed # Dados iniciais

npm start # Porta 3000

8.3 Frontend

cd frontend

cp .env.example .env # VITE_API_URL=http://localhost:3000/api

npm install

npm run dev # Porta 5173

8.4 Acesso Inicial

Admin: admin@hefesto.com.br / admin123

Swagger: http://localhost:3000/api/docs

9. Deploy em Produção

9.1 Infraestrutura

Servidor: DigitalOcean Droplet (Ubuntu 24.04, 2 vCPU, 4GB RAM)

Proxy reverso: Nginx

SSL: Let's Encrypt (Certbot)

Processo: PM2 (backend) / Nginx serve build estático (frontend)

BD: PostgreSQL 16

30

9.2 Nginx Config

server {

 listen 443 ssl;

 server_name hefesto.exemplo.com.br;

 ssl_certificate /etc/letsencrypt/live/hefesto.exemplo.com.br/fullchain.pem;

 ssl_certificate_key /etc/letsencrypt/live/hefesto.exemplo.com.br/privkey.pem;

 # Frontend (build estático)

 location / {

 root /var/www/hefesto/frontend/dist;

 try_files $uri $uri/ /index.html;

 }

 # API Backend

 location /api {

 proxy_pass http://127.0.0.1:3000;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

}

9.3 PM2

cd /var/www/hefesto/backend

pm2 start dist/main.js --name hefesto-api

pm2 save

pm2 startup

31

10. Variáveis de Ambiente

Backend (.env)

VARIÁVEL DESCRIÇÃO EXEMPLO

NODE_ENV Ambiente production

PORT Porta da API 3000

DB_TYPE Tipo de banco postgres

DB_HOST Host do banco localhost

DB_PORT Porta do banco 5432

DB_USERNAME Usuário do banco hefesto

DB_PASSWORD Senha do banco ***

DB_DATABASE Nome do banco hefesto_prod

JWT_SECRET Chave secreta JWT minha-chave-secreta-256bits

JWT_EXPIRATION Tempo de expiração do

access token

3600s

JWT_REFRESH_EXPIRATION Tempo de expiração do

refresh token

7d

CORS_ORIGIN Origem permitida https://hefesto.exemplo.com.br

OCR_API_KEY Chave da API de OCR ***

SMTP_HOST Servidor SMTP smtp.gmail.com

SMTP_PORT Porta SMTP 587

SMTP_USER Usuário SMTP noreply@hefesto.com.br

SMTP_PASS Senha SMTP ***

32

Frontend (.env)

VARIÁVEL DESCRIÇÃO EXEMPLO

VITE_API_URL URL base da API https://hefesto.exemplo.com.br/api

VITE_APP_NAME Nome da aplicação HEFESTO

Documento gerado automaticamente — HEFESTO v2.0

HEFESTO v2.0 · Kislanski Industries | AI Vertice · Fevereiro 2026

Documento confidencial — Todos os direitos reservados

