
HEFESTO — Manual Técnico

Sistema de Controle Orçamentário para Facilities
Versão 1.0 | Fevereiro 2025

1. Visão Geral da Arquitetura
O HEFESTO é uma aplicação web fullstack composta por:

• Backend: API REST em NestJS (Node.js) com TypeORM
• Frontend: SPA em React + TypeScript com Vite
• Banco de Dados: SQLite (desenvolvimento) / PostgreSQL (produção)
• Autenticação: JWT com RBAC (Role-Based Access Control)

┌─────────────────┐ HTTP/REST ┌─────────────────┐
│ React SPA │ ◄──────────────► │ NestJS API │
│ (Vite) │ JWT Bearer │ (TypeORM) │
│ Port 5173 │ │ Port 3000 │
└─────────────────┘ └────────┬────────┘

│
┌────────▼────────┐
│ SQLite / PG │
└─────────────────┘

2. Stack Completa

Componente Tecnologia Versão
Runtime Node.js 22.x LTS
Backend Framework NestJS 10.x
ORM TypeORM 0.3.x
Frontend Framework React 18.x
Build Tool Vite 5.x
Linguagem TypeScript 5.x
UI Components Tailwind CSS 3.x
BD Desenvolvimento SQLite3 5.x
BD Produção PostgreSQL 16.x
Auth @nestjs/jwt + passport 10.x
HTTP Client Axios 1.x
Validação class-validator 0.14.x
Documentação API @nestjs/swagger 7.x

3. Estrutura de Pastas
3.1 Backend

backend/

1

├── src/
│ ├── main.ts # Bootstrap da aplicação
│ ├── app.module.ts # Módulo raiz
│ ├── common/ # Guards, decorators, pipes, interceptors
│ │ ├── guards/
│ │ │ ├── jwt-auth.guard.ts
│ │ │ └── roles.guard.ts
│ │ ├── decorators/
│ │ │ ├── roles.decorator.ts
│ │ │ └── current-user.decorator.ts
│ │ └── interceptors/
│ │ └── audit.interceptor.ts
│ ├── database/ # Configuração TypeORM, migrations, seeds
│ │ ├── database.module.ts
│ │ ├── migrations/
│ │ └── seeds/
│ └── modules/
│ ├── auth/ # Autenticação JWT, login, refresh token
│ │ ├── auth.controller.ts
│ │ ├── auth.service.ts
│ │ ├── auth.module.ts
│ │ ├── strategies/
│ │ │ └── jwt.strategy.ts
│ │ └── dto/
│ ├── users/ # CRUD de usuários e perfis
│ │ ├── users.controller.ts
│ │ ├── users.service.ts
│ │ ├── entities/
│ │ │ ├── usuario.entity.ts
│ │ │ └── perfil.entity.ts
│ │ └── dto/
│ ├── locais/ # Gestão de locais/unidades
│ ├── centros-custo/ # Centros de custo vinculados a locais
│ ├── categorias/ # Categorias de serviço
│ ├── fornecedores/ # Cadastro de fornecedores e certidões
│ ├── demandas/ # Abertura e gestão de demandas
│ ├── propostas/ # Recebimento e comparação de propostas
│ ├── orcamento/ # Orçamento planejado vs realizado
│ ├── workflow/ # Máquina de estados de aprovação
│ ├── dashboard/ # Indicadores e relatórios
│ └── ordens-servico/ # Emissão e acompanhamento de OS
├── test/
├── nest-cli.json
├── tsconfig.json
└── package.json

2

3.2 Frontend

frontend/
├── src/
│ ├── main.tsx # Entry point
│ ├── App.tsx # Router + Layout
│ ├── assets/ # Imagens, ícones
│ ├── components/ # Componentes reutilizáveis
│ │ ├── Layout/
│ │ ├── Sidebar/
│ │ ├── Header/
│ │ ├── DataTable/
│ │ ├── StatusBadge/
│ │ └── Charts/
│ ├── pages/
│ │ ├── Login.tsx # Tela de autenticação
│ │ ├── Dashboard.tsx # Painel de indicadores
│ │ ├── Demandas.tsx # Lista de demandas com filtros
│ │ ├── Landing.tsx # Página inicial / nova demanda
│ │ ├── Fornecedores.tsx # Gestão de fornecedores
│ │ ├── Orcamentos.tsx # Orçamento planejado vs realizado
│ │ ├── OrdensServico.tsx # Ordens de serviço
│ │ ├── Relatorios.tsx # Relatórios gerenciais
│ │ └── Usuarios.tsx # Administração de usuários
│ ├── services/ # Axios clients e API calls
│ │ └── api.ts
│ ├── types/ # Interfaces TypeScript
│ └── index.css # Tailwind directives
├── vite.config.ts
├── tailwind.config.js
├── tsconfig.json
└── package.json

4. Modelo de Dados
4.1 Diagrama de Entidades

O sistema possui 16 entidades principais:
perfis ──< usuarios ──< demandas ──< itens_linha

│ │
│ ├──< propostas
│ │
│ ├──< workflow_aprovacao
│ │
│ └──< ordens_servico ──< avaliacoes
│
└──< audit_log

3

locais ──< centros_custo ──< orcamento_planejado

categorias ──< demandas

fornecedores ──< certidoes
fornecedores ──< propostas

alertas (standalone)

4.2 Descrição das Entidades

Entidade Descrição Campos Principais
1 perfis Perfis de acesso

(RBAC)
id, nome, descricao,
permissoes (JSON)

2 usuarios Usuários do
sistema

id, nome, email,
senha_hash,
perfil_id, ativo,
ultimo_acesso

3 locais Unidades/edifícios id, nome, endereco,
cidade, estado,
cnpj, ativo

4 centros_custo Centros de custo
por local

id, codigo,
descricao, local_id,
ativo

5 categorias Categorias de
serviço

id, nome, descricao,
sla_dias, ativo

6 fornecedores Cadastro de
fornecedores

id, razao_social,
cnpj, contato,
email, telefone,
ativo, rating

7 certidoes Certidões de
fornecedores

id, fornecedor_id,
tipo, arquivo_url,
validade, status

8 orcamento_planejadoBudget por centro
de custo/ano

id, centro_custo_id,
ano, mes,
valor_planejado,
valor_realizado

9 demandas Demandas de
serviço

id, titulo, descricao,
local_id,
categoria_id,
solicitante_id,
status, prioridade,
valor_estimado,
created_at

4

Entidade Descrição Campos Principais
10 itens_linha Itens detalhados da

demanda
id, demanda_id,
descricao,
quantidade,
unidade,
valor_unitario

11 propostas Propostas de
fornecedores

id, demanda_id,
fornecedor_id,
valor_total,
arquivo_url,
data_validade,
status,
observacoes

12 workflow_aprovacaoEtapas de
aprovação

id, demanda_id,
etapa,
aprovador_id,
status, comentario,
data_acao

13 ordens_servico Ordens de serviço
emitidas

id, demanda_id,
proposta_id,
numero_os,
data_inicio,
data_fim_prevista,
data_fim_real,
status

14 avaliacoes Avaliação
pós-execução

id,
ordem_servico_id,
avaliador_id, nota,
comentario,
created_at

15 audit_log Log de auditoria id, usuario_id, acao,
entidade,
entidade_id,
dados_antes,
dados_depois, ip,
created_at

16 alertas Notificações e
alertas

id, usuario_id, tipo,
mensagem, lido,
referencia_tipo,
referencia_id,
created_at

4.3 Perfis de Acesso (RBAC)

5

Perfil Permissões
Admin Acesso total ao sistema, gestão de

usuários e configurações
Gestor Facilities CRUD de demandas, fornecedores,

propostas, OS; aprovação nível 1
Aprovador Financeiro Aprovação nível 2 (financeiro),

visualização de orçamento
Diretoria Aprovação nível 3 (alçada máxima),

dashboard executivo
Solicitante Abertura de demandas,

acompanhamento do próprio pedido
Fornecedor Envio de propostas, acompanhamento de

OS atribuídas

5. API — Endpoints
5.1 Autenticação (/api/auth)

Método Rota Descrição
POST /api/auth/login Login com email/senha → JWT
POST /api/auth/refresh Renovar token
POST /api/auth/logout Invalidar token
GET /api/auth/me Dados do usuário logado
POST /api/auth/forgot-password Solicitar reset de senha
POST /api/auth/reset-password Resetar senha com token

5.2 Usuários (/api/users)

Método Rota Descrição
GET /api/users Listar usuários (paginado)
GET /api/users/:id Detalhes do usuário
POST /api/users Criar usuário
PATCH /api/users/:id Atualizar usuário
DELETE /api/users/:id Desativar usuário
GET /api/perfis Listar perfis

5.3 Locais (/api/locais)

Método Rota Descrição
GET /api/locais Listar locais
GET /api/locais/:id Detalhes do local
POST /api/locais Criar local

6

Método Rota Descrição
PATCH /api/locais/:id Atualizar local
DELETE /api/locais/:id Desativar local

5.4 Centros de Custo (/api/centros-custo)

Método Rota Descrição
GET /api/centros-custo Listar centros de custo
GET /api/centros-custo/:id Detalhes
POST /api/centros-custo Criar centro de custo
PATCH /api/centros-custo/:id Atualizar
DELETE /api/centros-custo/:id Desativar

5.5 Categorias (/api/categorias)

Método Rota Descrição
GET /api/categorias Listar categorias
GET /api/categorias/:id Detalhes
POST /api/categorias Criar categoria
PATCH /api/categorias/:id Atualizar
DELETE /api/categorias/:id Desativar

5.6 Fornecedores (/api/fornecedores)

Método Rota Descrição
GET /api/fornecedores Listar fornecedores
GET /api/fornecedores/:id Detalhes com certidões
POST /api/fornecedores Cadastrar fornecedor
PATCH /api/fornecedores/:id Atualizar fornecedor
DELETE /api/fornecedores/:id Desativar
POST /api/fornecedores/:id/certidoesUpload de certidão
GET /api/fornecedores/:id/certidoesListar certidões
DELETE /api/fornecedores/:id/certidoes/:certidaoIdRemover certidão

5.7 Demandas (/api/demandas)

Método Rota Descrição
GET /api/demandas Listar demandas (filtros:

status, local, categoria,
período)

7

Método Rota Descrição
GET /api/demandas/:id Detalhes completos da

demanda
POST /api/demandas Criar nova demanda
PATCH /api/demandas/:id Atualizar demanda
DELETE /api/demandas/:id Cancelar demanda
POST /api/demandas/:id/itens Adicionar item de linha
PATCH /api/demandas/:id/itens/:itemIdAtualizar item
DELETE /api/demandas/:id/itens/:itemIdRemover item
POST /api/demandas/:id/enviar-

cotacao
Enviar para cotação

GET /api/demandas/:id/comparativoComparativo de propostas

5.8 Propostas (/api/propostas)

Método Rota Descrição
GET /api/propostas Listar propostas
GET /api/propostas/:id Detalhes da proposta
POST /api/propostas Submeter proposta (fornecedor)
PATCH /api/propostas/:id Atualizar proposta
DELETE /api/propostas/:id Retirar proposta
POST /api/propostas/:id/aceitar Aceitar proposta
POST /api/propostas/:id/rejeitar Rejeitar proposta
POST /api/propostas/:id/ocr Processar OCR do arquivo

5.9 Orçamento (/api/orcamento)

Método Rota Descrição
GET /api/orcamento Orçamento geral (filtros:

ano, local, centro_custo)
GET /api/orcamento/:id Detalhes da linha

orçamentária
POST /api/orcamento Criar linha orçamentária
PATCH /api/orcamento/:id Atualizar valores
GET /api/orcamento/resumo Resumo planejado vs

realizado
GET /api/orcamento/projecao Projeção de gastos

5.10 Workflow (/api/workflow)

8

Método Rota Descrição
GET /api/workflow/pendentes Aprovações pendentes do

usuário logado
GET /api/workflow/demanda/:demandaIdHistórico de aprovações da

demanda
POST /api/workflow/aprovar Aprovar etapa
POST /api/workflow/rejeitar Rejeitar etapa
POST /api/workflow/devolver Devolver para correção
GET /api/workflow/alçadas Consultar alçadas

configuradas

5.11 Dashboard (/api/dashboard)

Método Rota Descrição
GET /api/dashboard/indicadoresKPIs gerais
GET /api/dashboard/demandas-

por-status
Demandas agrupadas por
status

GET /api/dashboard/gastos-
por-local

Gastos por unidade

GET /api/dashboard/gastos-
por-categoria

Gastos por categoria

GET /api/dashboard/evolucao-
mensal

Série temporal de gastos

GET /api/dashboard/top-
fornecedores

Ranking de fornecedores

GET /api/dashboard/sla Indicadores de SLA

5.12 Ordens de Serviço (/api/ordens-servico)

Método Rota Descrição
GET /api/ordens-servico Listar OS
GET /api/ordens-servico/:id Detalhes da OS
POST /api/ordens-servico Emitir OS
PATCH /api/ordens-servico/:id Atualizar OS
POST /api/ordens-servico/:id/iniciar Marcar início da execução
POST /api/ordens-servico/:id/concluir Marcar conclusão
POST /api/ordens-servico/:id/avaliar Avaliar serviço prestado

5.13 Alertas (/api/alertas)

9

Método Rota Descrição
GET /api/alertas Listar alertas do usuário
PATCH /api/alertas/:id/lido Marcar como lido
DELETE /api/alertas/:id Remover alerta

Total: 68 endpoints

6. Autenticação e Autorização
6.1 Fluxo JWT

1. Usuário faz POST /api/auth/login com email e senha
2. Backend valida credenciais e retorna { accessToken, refreshToken }
3. Frontend armazena tokens e envia Authorization: Bearer <accessToken> em

todas as requests
4. Token expira em 1h; refresh token expira em 7d
5. Frontend usa /api/auth/refresh para renovar automaticamente

6.2 Guards NestJS

@UseGuards(JwtAuthGuard, RolesGuard)
@Roles('admin', 'gestor_facilities')
@Get('demandas')
findAll() { ... }

• JwtAuthGuard: valida o token JWT
• RolesGuard: verifica se o perfil do usuário está na lista de roles permitidas
• @CurrentUser(): decorator customizado que injeta o usuário logado

7. Workflow de Aprovação
7.1 Máquina de Estados

RASCUNHO → EM_ESCOPO → EM_COTAÇÃO → PROPOSTAS_RECEBIDAS
→ EM_COMPARAÇÃO → AGUARDANDO_APROVAÇÃO → APROVADA
→ OS_EMITIDA → EM_EXECUÇÃO → CONCLUÍDA → AVALIADA

Estados alternativos:
AGUARDANDO_APROVAÇÃO → REJEITADA
AGUARDANDO_APROVAÇÃO → DEVOLVIDA → EM_ESCOPO
Qualquer estado → CANCELADA

7.2 Alçadas de Aprovação

10

Faixa de Valor Aprovador
Até R$ 5.000 Gestor Facilities
R$ 5.001 — R$ 50.000 Gestor Facilities + Aprovador Financeiro
R$ 50.001 — R$ 200.000 Gestor + Financeiro + Diretoria
Acima de R$ 200.000 Gestor + Financeiro + Diretoria + CEO

Cada etapa gera um registro em workflow_aprovacao com timestamp, aprovador e
comentário.

8. Como Rodar Localmente
8.1 Pré-requisitos

• Node.js 22.x
• npm 10.x
• Git

8.2 Backend

cd backend
cp .env.example .env # Ajustar variáveis
npm install
npm run build
npm run migration:run # Criar tabelas
npm run seed # Dados iniciais
npm start # Porta 3000

8.3 Frontend

cd frontend
cp .env.example .env # VITE_API_URL=http://localhost:3000/api
npm install
npm run dev # Porta 5173

8.4 Acesso Inicial

• Admin: admin@hefesto.com.br / admin123
• Swagger: http://localhost:3000/api/docs

9. Deploy em Produção
9.1 Infraestrutura

• Servidor: DigitalOcean Droplet (Ubuntu 24.04, 2 vCPU, 4GB RAM)
• Proxy reverso: Nginx
• SSL: Let’s Encrypt (Certbot)

11

• Processo: PM2 (backend) / Nginx serve build estático (frontend)
• BD: PostgreSQL 16

9.2 Nginx Config

server {
listen 443 ssl;
server_name hefesto.exemplo.com.br;

ssl_certificate /etc/letsencrypt/live/hefesto.exemplo.com.br/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/hefesto.exemplo.com.br/privkey.pem;

Frontend (build estático)
location / {

root /var/www/hefesto/frontend/dist;
try_files $uri $uri/ /index.html;

}

API Backend
location /api {

proxy_pass http://127.0.0.1:3000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

9.3 PM2

cd /var/www/hefesto/backend
pm2 start dist/main.js --name hefesto-api
pm2 save
pm2 startup

10. Variáveis de Ambiente
Backend (.env)

Variável Descrição Exemplo
NODE_ENV Ambiente production
PORT Porta da API 3000
DB_TYPE Tipo de banco postgres
DB_HOST Host do banco localhost
DB_PORT Porta do banco 5432
DB_USERNAME Usuário do banco hefesto
DB_PASSWORD Senha do banco ***

12

Variável Descrição Exemplo
DB_DATABASE Nome do banco hefesto_prod
JWT_SECRET Chave secreta JWT minha-chave-secreta-

256bits
JWT_EXPIRATION Tempo de expiração do

access token
3600s

JWT_REFRESH_EXPIRATION Tempo de expiração do
refresh token

7d

CORS_ORIGIN Origem permitida https://hefesto.exemplo.com.br
OCR_API_KEY Chave da API de OCR ***
SMTP_HOST Servidor SMTP smtp.gmail.com
SMTP_PORT Porta SMTP 587
SMTP_USER Usuário SMTP noreply@hefesto.com.br
SMTP_PASS Senha SMTP ***

Frontend (.env)

Variável Descrição Exemplo
VITE_API_URL URL base da API https://hefesto.exemplo.com.br/api
VITE_APP_NAME Nome da aplicação HEFESTO

Documento gerado automaticamente — HEFESTO v1.0

13

	HEFESTO — Manual Técnico
	1. Visão Geral da Arquitetura
	2. Stack Completa
	3. Estrutura de Pastas
	3.1 Backend
	3.2 Frontend

	4. Modelo de Dados
	4.1 Diagrama de Entidades
	4.2 Descrição das Entidades
	4.3 Perfis de Acesso (RBAC)

	5. API — Endpoints
	5.1 Autenticação (/api/auth)
	5.2 Usuários (/api/users)
	5.3 Locais (/api/locais)
	5.4 Centros de Custo (/api/centros-custo)
	5.5 Categorias (/api/categorias)
	5.6 Fornecedores (/api/fornecedores)
	5.7 Demandas (/api/demandas)
	5.8 Propostas (/api/propostas)
	5.9 Orçamento (/api/orcamento)
	5.10 Workflow (/api/workflow)
	5.11 Dashboard (/api/dashboard)
	5.12 Ordens de Serviço (/api/ordens-servico)
	5.13 Alertas (/api/alertas)

	6. Autenticação e Autorização
	6.1 Fluxo JWT
	6.2 Guards NestJS

	7. Workflow de Aprovação
	7.1 Máquina de Estados
	7.2 Alçadas de Aprovação

	8. Como Rodar Localmente
	8.1 Pré-requisitos
	8.2 Backend
	8.3 Frontend
	8.4 Acesso Inicial

	9. Deploy em Produção
	9.1 Infraestrutura
	9.2 Nginx Config
	9.3 PM2

	10. Variáveis de Ambiente
	Backend (.env)
	Frontend (.env)

